Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (2): 172-176     DOI:
Research Articles Current Issue | Archive | Adv Search |
Thermal Stability of A Novel Ti-Si-C-N Superhard Nanocomposite Coating at Elevated Temperature
Yan Guo
西安交通大学材料学院国家重点实验室
Cite this article: 

Yan Guo. Thermal Stability of A Novel Ti-Si-C-N Superhard Nanocomposite Coating at Elevated Temperature. Acta Metall Sin, 2006, 42(2): 172-176 .

Download:  PDF(481KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Superhard nanocomposite Ti-Si-C-N coatings were deposited on substrate of high speed steel using an industrial pulsed d.c. plasma chemical vapor deposition set-up. Dependence of Si and C contents and annealing at elevated temperatures on the microstructure and hardness of Ti-Si-C-N coatings were investigated. Detailed microstructure examined by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) suggested that the Ti-Si-C-N coatings was a nanocomposite structure composed of nanocrystalline Ti(C,N) and amorphous carbon and Si3N4. And the crystalline size and microhardness of coatings showed high thermal stability even at 1000° C when Si and C contents were higher of 12.1 at.% Si, 32.9 at.% C. The possible origin of high thermal stability of superhard nanocomposite Ti-Si-C-N coatings is explained by spinodal decomposition that occurs during deposition.
Key words:  superhard nanocomposite coatings      crystallite size      microhardness      thermal stability      Ti-Si-C-N      
Received:  20 May 2005     
ZTFLH:  TG174.44  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I2/172

[1] Ma S L, Xu K W, Jie W Q. J Vac Sci Technol, 2004; B22: 1694
[2] Veprek S, Reiprik S, Li S Z. Appl Phys Lett, 1995; 66: 2640
[3] Ma Q S, Ma S L, Xu K W. J Vac Sci Technol, 2005; A23(1): 12
[4] Ma S L, Xu K W. Acta Metall Sin, 2004; 40: 669(马胜利,徐可为.金属学报,2004;40:669)
[5] Ma S L, Xu K W. Chin J Nonfer Met, 2000; 10: 489(马胜利,徐可为.中国有色金属学报,2000;10:489)
[6] Jeon J H, Choi S R, Chung W S, Kim K H. Surf Coat Technol, 2004; 188-189: 415
[7] Kuo D H, Liao W C. Appl Surf Sci, 2002; 199: 278
[8] Ma D Y. PhD Thesis, Xi'an Jiaotong University, 2005(马大衍.西安交通大学博士学位论文,2005)
[9] Veprek S, Niederhofer A, Moto K, Botom T, Mannling H D, Nesladek P, Dollinger G. Surf Coat Technol, 2000; 133-134: 152
[10] Ma S L, Prochazka J, Karvankova P, Ma Q S, Niu X P, Ma D Y, Xu K W. Surf Coat Technol, 2005; 194: 143
[11] Kuo D H, Huang K W. Thin Solid Films, 2001; 394: 81
[12] Kuo D H, Liao W C. Thin Solid Films, 2002; 419: 11
[13] Guo Y, Chang G R, Ma S L, Xu K W. Acta Metall Sin, 2005; 41: 985(郭岩,畅庚榕,马胜利,徐可为.金属学报,2005;41:985)
[14] Kim K H, Choi S R, Yoon S Y. Surf Coat Technol, 2002; 298: 243
[15] Veprek S, Haussmann M, Reiprich S, Dian J, Li S Z. Surf Coat Technol, 1996; 86/87: 394
[16] Ma D Y, Ma S L, Xu K W. Chin J Mater Res, 2004; 18: 617(马大衍,马胜利,徐可为.材料研究学报,2004;18:617)
[17] Mannling H D, Patil D S, Moto K, Jilek M, Veprek S. Surf Coat Technol, 2001; 146-147: 263
[18] Veprek S, Veprek H, Maritza G J, Karvankova P. Thin Solid Films, 2005; 476: 1Z
[1] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[4] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[5] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[6] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[7] PENG Yanyan, YU Liming, LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. 金属学报, 2020, 56(8): 1075-1083.
[8] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[9] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[10] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[11] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[12] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[13] Jianxiong ZOU,Bo LIU,Liwei LIN,Ding REN,Guohua JIAO,Yuanfu LU,Kewei XU. Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier[J]. 金属学报, 2017, 53(1): 31-37.
[14] Chenliang WU,Song ZHANG,Chunhua ZHANG,Meng GUAN,Junzhe TAN. PHASE EVOLUTION OF FeCoCrAlCuNiMox COATINGS BY LASER HIGH-ENTROPY ALLOYING ON STAINLESS STEELS[J]. 金属学报, 2016, 52(7): 797-803.
[15] Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS[J]. 金属学报, 2016, 52(6): 761-768.
No Suggested Reading articles found!