Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (2): 167-171     DOI:
Research Articles Current Issue | Archive | Adv Search |
Recrystallization of Ni Base SUperalloy DZ4
DongLin Wang
沈阳黎明航空发动机(集团)有限公司 技术中心
Cite this article: 

DongLin Wang. Recrystallization of Ni Base SUperalloy DZ4. Acta Metall Sin, 2006, 42(2): 167-171 .

Download:  PDF(734KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Abstract In this paper, the recrystallization of the surface deformed structure of DZ4 directionally solidified superalloy was studied by SEM and X-ray diffraction. The results show that under the condition of two-hour holding, recrystallization takes place at 1000℃.The recrystallization layer increases slowly with the temperature rise when the heat treatment is performed at the temperature lower than that of the -solutioning, whose structure is cellular one, but increases rapidly when performed at the temperature higher than that of the -solutioning and the larger phase within the recrystallization layer decreases until totally disappeared. The recrystallization formed at temperature of 950℃ and 870℃ for long holding time is cellular structure. The rate and thickness of recrystallization mainly depend on temperature, which have little relation to holding time.
Key words:  DZ4 alloy      surface recrystallization      
Received:  20 May 2005     
ZTFLH:  TG111.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I2/167

[1] Khan T, Caron P, Nakagawa Y G. JOM, 1986; 38(7): 16
[2] Zheng Y R, Ruan Z C, Wang S C. Acta Metall Sin, 1995; 31(Suppl): 325(郑运荣,阮中慈,王顺才.金属学报,1995;31(增刊):325)
[3] Oblak J M, Owczarski W A. Trans AIME, 1966; 242: 1563
[4] Porter A, Ralph B. J Mater Sci, 1981; 16: 707
[5] Carins R L, Curwick L R, Benjamin J S. Metall Trans, 1975; 6A: 179
[6] Benjamin J S, Bomford M J. Metall Trans, 1974; 5A: 615
[7] Biirgel R, Portella P D, Preuhs J. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J, eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 229
[8] Okazaki M, Hiura T, Suzuki T. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J, eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 505
[9] Bond S D, Martin J W. J Mater Sci, 1984; 19: 3867
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[3] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[4] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[5] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[6] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[7] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[8] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[9] Changshuai WANG,Lili GUO,Liying TANG,Rongcan ZHOU,Jianting GUO,Lanzhang ZHOU. Oxidation Behavior of GH984G Alloy in Steam at 700 [J]. 金属学报, 2019, 55(7): 893-901.
[10] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[11] Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. 金属学报, 2018, 54(11): 1693-1704.
[12] TAN Meilin, WANG Changshuai, GUO Yongan, GUO Jianting, ZHOU Lanzhang. INFLUENCE OF Ti/Al RATIOS ON γ′ COARSENING BEHAVIOR AND TENSILE PROPERTIES OF GH984G ALLOY DURING LONG-TERM THERMAL EXPOSURE[J]. 金属学报, 2014, 50(10): 1260-1268.
[13] . INFLUENCE OF Ti/Al RATIOS ON γ′ COARSENING BEHAVIOR AND MECHANICAL PROPERTIES OF GH984G DURING LONG-TERM AGING[J]. 金属学报, 0, 0(0): 0-0.
[14] NIE Defu ZHAO Jie ZHANG Junshan. AN APPROACH TO ESTIMATE ROOM TEMPERATURE CREEP OF STRUCTURAL STEELS[J]. 金属学报, 2011, 47(2): 179-184.
[15] QIAN Gui'an HONG Youshi. EFFECTS OF ENVIRONMENTAL MEDIA ON HIGH CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIORS OF STRUCTURAL STEEL 40Cr[J]. 金属学报, 2009, 45(11): 1356-1363.
No Suggested Reading articles found!