Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (10): 1115-1120     DOI:
Research Articles Current Issue | Archive | Adv Search |
Numerical Simulation and Damage Fracture Prediction for Thick Sheet Metal Fine-blanking based on Mixed Displacement-Pressure FEM
;
上海交通大学 塑性成形工程系
Cite this article: 

;. Numerical Simulation and Damage Fracture Prediction for Thick Sheet Metal Fine-blanking based on Mixed Displacement-Pressure FEM. Acta Metall Sin, 2006, 42(10): 1115-1120 .

Download:  PDF(352KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Local plastic shearing band is initialized near blanking clearance during fine-blanking, and forming failures such as ductile fracture and large roll-over usually occur. By using MSC/MARC software, an axisymmetric FE model is created, and mixed u-p updated Lagrange FEM is used to simulate the severe plastic deformation, which could overcome shear locking and volume locking. Together with adaptive remeshing technique based on strain gradient and surface curvature, the strain localization phenomenon could be captured. Schiffmann damage work density model is used to predict the developments of damage and fracture in sheet metal. The height of roll-over, height of burnish band and fine-blanking force are predicted, and qualified part was obtained using optimized process parameters from simulation.
Key words:  fine-blanking      damage      ductile fracture      mixed displacement-pressure FEM      adaptive remeshing      
Received:  24 February 2006     
ZTFLH:  TG386  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I10/1115

[1]Zhou K H.Simplified Fine-blanking Manual.Beijing:National Defence Industry Press,1993(周开华.简明精冲手册.北京:国防工业出版社,1993)
[2]Rotiz M,Leroy Y,Neelleman A.Appl Mech Eng,1987;61:189
[3]Simo J C,Armero F.Int J Numer Method Eng,1992;33:1413
[4]Pastor M,Qquecedo M,Zienkiewicz O C.Comput Struct,1997;62:13
[5]Gurson A L.Eng Mater Technol,1977;99:2
[6]Tvergaard V,Needleman A.Acta Metall,1984,32:157
[7]McClintock F A.J Appl Mech Trans ASME,1968;35:363
[8]Rice J R,Tracey D.J Mech Phys Solids,1969;17:201
[9]Schiffmann R,Bleck W,Dahl W.Comput Mater Sci,1998;13:142
[10]Lange K,Birzer D I,Mukhoty A.Cold Forming and Fineblanking—A Handbook on Cold Processing,Material Properities,Component Design.Switzerland:Edelstahlwerke Buderus AG,1997:26
[1] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[2] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[3] ZHU Xiaohui, LIU Xiangbing, WANG Runzhong, LI Yuanfei, LIU Wenqing. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. 金属学报, 2022, 58(7): 905-910.
[4] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[5] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[6] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[7] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[8] Yucheng WU. Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor[J]. 金属学报, 2019, 55(8): 939-950.
[9] Wenshu TANG,Junfeng XIAO,Yongjun LI,Jiong ZHANG,Sifeng GAO,Qing NAN. Effect of Re-Heat Rejuvenation Treatment on γ′ Microstructure of Directionally SolidifiedSuperalloy Damaged by Creep[J]. 金属学报, 2019, 55(5): 601-610.
[10] Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. 金属学报, 2018, 54(11): 1693-1704.
[11] Jun SUN, Jinyu ZHANG, Kai WU, Gang LIU. SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS[J]. 金属学报, 2016, 52(10): 1249-1258.
[12] LI Zhengcao, CHEN Liang. IRRADIATION EMBRITTLEMENT MECHANISMS AND RELEVANT INFLUENCE FACTORS OF NUCLEAR REACTOR PRESSURE VESSEL STEELS[J]. 金属学报, 2014, 50(11): 1285-1293.
[13] ZHENG Junzi, ZHANG Laiqi, HOU Yongming, MA Xiangling, LIN Junpin. QUASI ISOTHERMAL FORGING SIMULATION OF β-γ TiAl ALLOY CONTAINING HIGH CONTENT OF Nb[J]. 金属学报, 2013, 49(11): 1439-1444.
[14] WAN Qiangmao SHU Guogang WANG Rongshan DING Hui PENG Xiao ZHANG Qi LEI Jing . STUDY ON THE MICROSTRUCTURE EVOLUTION OF A508–3 STEEL UNDER PROTON IRRADIARION[J]. 金属学报, 2012, 48(8): 929-934.
[15] HUANG Yuan KONG Deyue HE Fang WANG Yulin LIU Wenxi. PREPARATION OF Mo/Ag LAMINAR COMPOSITES BY USING IRRADIATION DAMAGE ALLOYING METHOD[J]. 金属学报, 2012, 48(10): 1253-1259.
No Suggested Reading articles found!