Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1439-1444    DOI: 10.3724/SP.J.1037.2013.00518
Current Issue | Archive | Adv Search |
QUASI ISOTHERMAL FORGING SIMULATION OF β-γ TiAl ALLOY CONTAINING HIGH CONTENT OF Nb
ZHENG Junzi, ZHANG Laiqi, HOU Yongming, MA Xiangling, LIN Junpin
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHENG Junzi, ZHANG Laiqi, HOU Yongming, MA Xiangling, LIN Junpin. QUASI ISOTHERMAL FORGING SIMULATION OF β-γ TiAl ALLOY CONTAINING HIGH CONTENT OF Nb. Acta Metall Sin, 2013, 49(11): 1439-1444.

Download:  PDF(3138KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiAl-based alloys containing high content of Nb are significantly promising for high-temperature structural applications in aerospace and automotive industries, due to their low density, excellent high temperature strength, high resistance to oxidization and creep resistance. However, poor hot workability limits their extensive applications. Owing to sufficient number of independent slip system, small deformation resistance, apt to plastic forming of disordered bccβ phase at elevated temperature, the novel β-γ TiAl with high content of Nb alloys exhibit excellent hot deformability. The quasi isothermal forging process of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y alloy is investigated by using a Deform-3D software. The effective stress, effective strain, temperature distribution of the alloy are analyzed. In order to obtain the critical damage factor of the alloy under the condition of 1150℃ and strain rate 5×10-2s-1, the hot compression physical simulation experiment of the alloy is performed to achieve true stress-strain data. By inputting these data into the Deform-3D software to simulate the true compression process, the critical damage factor is obtained. The results demonstrate that with increase of strain rate, the temperature loss becomes less obvious, the effective stress and the maximum effective strain rises up, the deformation uniformity ratio decreases and the deformation becomes more uniform. Combined with the simulation and experiment results, the critical damage factor of the β-γ TiAl alloy containing high content of Nb is 0.206 during the quasi isothermal forging process at\linebreak 1150℃ and strain rate 5×10-2s-1.

Key words:  β-γTiAl alloy containing high content of Nb      quasi isothermal forging      Deform-3D simulation      effective stress and strain distribution      critical damage factor     
Received:  25 August 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00518     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1439

[1] Bystrzanowski S, Bartels A, Clemens H, Gerling R.  Intermetallics, 2008; 16: 717

[2] Wang Y H, Lin J P, Xu X J, He Y H, Wang Y L, Chen G L.  J Alloys Compd, 2008; 458: 313
[3] Wang Y H, Lin J P, He Y H, Wang Y L, Chen G L.  Mater Sci Eng, 2007; A471: 82
[4] Yan Y Q, Wang W S, Zhang Z Q, Luo G Z, Zhou L.  Mater Rev, 2000; 14: 15
(闫蕴琪, 王文生, 张振棋, 罗国珍, 周廉. 材料导报, 2000; 14: 15)
[5] Paul J D H, Appel F, Wanger R.  Acta Mater, 1998; 46: 1075
[6] Viswanathan G B, Vasudevan V K.  Scr Metall Mater, 1995; 32: 1705
[7] Zhang W J, Evangelista E, Francesconi L, Chen G L.Mater Sci Eng, 1996; A207: 202
[8] Naka S, Thomas M, Khan T.  Mater Sci Eng, 1992; 8: 291
[9] Kimura M, Hashimoto K, Morikawa H.  Mater Sci Eng, 1992; A152: 54
[10] Kim Y W.  JOM, 1989; 41(7): 24
[11] Schmoelzer T, Liss K D, Zickler G A, Watson I J, Droessler L M,Wallgram W, Buslaps T, Studer A, Clemens H.  Intermetallics, 2010; 18: 1544
[12] Chen Y Y, Zhang S Z, Kong F T, Liu Z Y, Lin J P.  Rare Met, 2012; 36: 154
(陈玉勇, 张树志, 孔凡涛, 刘祖岩, 林均品. 稀有金属, 2012; 36: 154)
[13] Tetsui T, Shindo K, Kaji S, Kobayashi S, Takeyama M.  Intermetallics, 2005; 13: 971
[14] Donald S, Kim Y W. In: Ninomi M, Akiyama S, Ikeda M, eds.,  Ti-2007 Science and Engineering,Kyoto: The Japan Institute of Metals, 2007: 1021
[15] Clemens H, Wallgram W, Kremmer S.  Adv Eng Mater, 2008; 10: 707
[16] Kim J S, Lee Y H, Kim Y W, Lee C S.  Mater Sci Forum, 2007; 539-543: 1531
[17] Li B H, Chen Y Y.  J Alloys Compd, 2009; 473: 123
[18] Niu H Z, Chen Y Y, Xiao S L, Kong F T, Zhang C J.  Intermetallics, 2011; 19: 1767
[19] Beddoes J, Chen W R.  J Mater Sci, 2002; 37: 621
[20] Xu X J, Lin J P, Wang Y L, Song X P, Lin Z, Chen G L.  Mater Sci Technol, 2007; 15: 709
(徐向俊, 林均品, 王艳丽, 宋西平, 林志, 陈国良. 材料科学与工艺, 2007; 15: 709)
[21] Komori K.  Int J Mech Sci, 2003; 45: 141
[22] Dorum C, Hopperstad O S,  Berstad T. Eng Fract Mech, 2009; 76: 2232
[23] Sowerby R, Chandtasekaran N.  Mater Sci Eng, 1986; 79: 27
[24] Xu X J.  PhD Dissertation, University of Science and Technology Beijing, 2006
(徐向俊. 北京科技大学博士学位论文, 2006)
[25] Zhang W.  PhD Dissertation, Central South University, Changsha, 2011
(张伟. 中南大学博士学位论文, 长沙, 2011)
[26] Liang X.  Int J Solids Struct, 2007; 44: 5163
[27] Su X K, Li S S, Han Y F, Li Z X, Xu X J, Xu L H, Lin J P, Chen G L.Chin J Nonferrous Met, 2004; 14: 1410

(苏喜孔, 李树索, 韩雅芳, 李臻熙, 徐向俊, 徐丽华, 林均品, 陈国良.中国有色金属学报, 2004; 14: 1410)

No related articles found!
No Suggested Reading articles found!