Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1253-1259    DOI: 10.3724/SP.J.1037.2011.00811
Current Issue | Archive | Adv Search |
PREPARATION OF Mo/Ag LAMINAR COMPOSITES BY USING IRRADIATION DAMAGE ALLOYING METHOD
HUANG Yuan, KONG Deyue, HE Fang, WANG Yulin, LIU Wenxi
School of Materials Science and Engineering, Tianjin University, Tianjin 300072
Cite this article: 

HUANG Yuan KONG Deyue HE Fang WANG Yulin LIU Wenxi. PREPARATION OF Mo/Ag LAMINAR COMPOSITES BY USING IRRADIATION DAMAGE ALLOYING METHOD. Acta Metall Sin, 2012, 48(10): 1253-1259.

Download:  PDF(2836KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The preparation of laminar metal matrix composites for immiscible alloy systems was difficult due to the positive formation heat and diffusion difficulty between each other, resulting in no metallurgy combination forming on interfaces. Aiming at this situation, a new irradiation damage alloying method for immiscible and not reacting alloy systems was presented in this work, through irradiation damages were produced by an ion implantation technology in the matrix metal first, and then the metal in the surface layer diffused into the matrix metal through the irradiation damages to form metallurgy combination with the metal. The key of this kind of metallurgy combination is to form amorphous alloy phase in the diffusion layer. By alloying the high–performance Mo/Ag laminar metal matrix composites used in spacecraft were prepared, whose maxium resistance spot welding joint tensile strength reaches 150 MPa, the average 130 MPa. The properties of thees composites exceed the national military standards and the technical requirements specified by astronic users.

Key words:  irradiation damage alloying      immiscible      laminar composite      ion implantation     
Received:  29 December 2011     
ZTFLH:  TG13  
Fund: 

Supported by National Natural Science Foundation of China (No.51171128) and Key Technologies R&D Program of Tianjin (No.11ZCKFGX03800)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00811     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1253

[1] de Rooij A. In: ESTEC ed., Proc Hubble Space Telescope Solar–Array Workshop. Noordwijk: ESA WPP–77, 1995: 341

[2] Yu C T, Cui J Z, Wang L. Metal Matrix Composite. Beijing: Metallurgical Industry Press, 1995: 9

(于春田, 崔建忠, 王 磊. 金属基复合材料. 北京: 冶金工业出版社, 1995: 9)

[3] Yu Z M, Wu C J, Xie J X, Wu Y. Foundry Technol, 2004; 25: 399

(于治民, 吴春京, 谢建新, 吴渊. 铸造技术, 2004; 25: 399)

[4] Zhong P Q. China Molybdenum Ind, 2000; 24: 15

(钟培全.中国钼业, 2000; 24: 15)

[5] Peng D S, Liu L F, Zhu X X. Mater Rev, 2000; 14: 23

(彭大暑, 刘浪飞, 朱旭霞.材料导报, 2000; 14: 23)

[6] Yu C Q, Xu Y H, Zhang Y, Li Z C, Chen Q B. Electr Mater, 2008; (2): 15

(于朝清, 徐永红, 章 应, 李仲才, 陈前兵.电工材料, 2008; (2): 15)

[7] Zhang Z J, Jin O, Liu B X. Phy Rev, 1995; 51B: 8076 [8] Liu B X, Chen Y G. Physics, 1996; 25: 641

(柳百新, 陈益刚. 物理, 1996; 25: 641)

[9] Liu B X, Chen Y G, Jin O. Chin J Mater Res, 1997; 11: 561

(柳百新, 陈益刚, 金 瓯. 材料研究学报, 1997; 11: 561)

[10] Yu J N. Material Radiation Effect. Beijing: Chemical Industry Press, 2007: 4

(郁金南. 材料辐照效应. 北京: 化学工业出版社, 2007: 4)

[11] Zhang G H, Zhong S Q. Ion Implantation Technology. Beijing: Mechanical Industry Press, 1982: 253

(张光华, 钟士谦.离子注入技术.北京: 机械工业出版社, 1982: 253)

[12] Hu C. Surface Treatment Technology Handbook. Beijing: Beijing Industry University Press, 1997: 646

(胡传炘. 表面处理技术手册.北京: 北京工业大学出版社, 1997: 646)

[13] Kong D Y. Master Thesis, Tianjin University, 2011

(孔德月. 天津大学硕士学位论文, 2011)

[14] Xu Z. Plasma Surface Metallurgy. Beijing: Science Press, 2008: 93

(徐重. 等离子表面冶金学. 北京: 科学出版社, 2008: 93)

[15] Yu Z S, Chen N. Acta Metall Sin, 1992; 28: 104

(余宗森, 陈宁. 金属学报, 1992; 28: 104)

[16] Yu Z S, Chen N. Acta Metall Sin, 1994; 30: 7

(余宗森, 陈宁. 金属学报, 1994; 30: 7)

[17] Hao X P, Wang B Y, Yu R S, Wei L. Acta Phys Sin, 2007; 56: 6543

(郝小鹏, 王宝义, 于润升, 魏龙. 物理学报, 2007; 56: 6543)

[18] Wu S L, Chen Y Q, Wu Y C, Wang S J, Wen X Y, Zhai T G. Acta Phys Sin, 2006; 55: 6129

(吴世亮, 陈叶清, 吴奕初, 王少阶, 温熙宇, 翟同广. 物理学报, 2006; 55: 6129)

[19] Liu B X. Prog Phys, 1993; 13: 38

(柳百新. 物理学进展, 1993; 13: 38)

[20] Zhang Z J, Liu B X. J Appl Phys, 1994; 75: 4948

[21] Zhang Z J, Liu B X. J Appl Phys, 1994; 76: 3351

[22] Liu B X, Zhang Z J. Phys Rev, 1994; 49B: 12519

[23] Pan F, Liu B X. Chin J Mater Res, 1988; 12: 311

(潘峰, 柳百新. 材料研究学报, 1998; 12: 311)

[24] Lopez J M, Alonso J A, Gallego L J. Phys Rev, 1987; 36B: 3716

[25] Guan Q F, Cheng D Q, Chen K M, Pan L. Nucl Techniq, 2008; 31: 519

(关庆丰, 程笃庆, 陈康敏, 潘励. 核技术, 2008; 31: 519)

[26] Zou H, Jing H Y, Wang Z P, Guan Q F. Acta Phys Sin, 2010; 59: 6384

(邹慧, 荆洪阳, 王志平, 关庆丰. 物理学报, 2010; 59: 6384)

[1] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[2] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[3] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[4] Bin CHEN,Jie HE,Xiaojun SUN,Jiuzhou ZHAO,Hongxiang JIANG,Lili ZHANG,Hongri HAO. Liquid-Liquid Phase Separation of Fe-Cu-Pb Alloy and Its Application in Metal Separation and Recycling of Waste Printed Circuit Boards[J]. 金属学报, 2019, 55(6): 751-761.
[5] Lin ZHANG,Tiannan MAN,Engang WANG. Influence of Dispersed Solid Particles on the Liquid-Liquid Separation Process of Al-Bi Alloys[J]. 金属学报, 2019, 55(3): 399-409.
[6] Zhongyuan WANG,Jie HE,Baijun YANG,Hongxiang JIANG,Jiuzhou ZHAO,Tongmin WANG,Hongri HAO. LIQUID-LIQUID PHASE SEPARATION AND FORMA-TION OF TWO GLASSY PHASES IN Zr-Ce-Co-CuIMMISCIBLE ALLOYS[J]. 金属学报, 2016, 52(11): 1379-1387.
[7] YANG Zhizeng, SUN Qian, ZHAO Jiuzhou. DIRECTIONAL SOLIDIFICATION OF MONOTECTIC COMPOSITION Al-Bi ALLOY[J]. 金属学报, 2014, 50(1): 25-31.
[8] ZHANG Junfang, WANG Yujin,LU Wenquan, ZHANG Shuguang, LI Jianguo. THE CORE-SHELL STRUCTURE OF Al70Bi11Sn19 IMMISCIBLE ALLOY PARTICLES[J]. 金属学报, 2013, 29(4): 457-463.
[9] LEI Mingkai WANG Kesheng OU Yi Xiang ZHANG Lei. PLASMA–BASED LOW–ENERGY NITROGEN ION IMPLANTATION OF 2Cr13 MARTENSITIC STAINLESS STEEL USED IN PUMPS AND VALVES[J]. 金属学报, 2011, 47(12): 1490-1494.
[10] HE Jie LI Haiquan XING Chengrao ZHAO Jiuzhou. DESIGN AND PREPARATION OF IN SITU Pb-RICH PARTICLES/Al BASE METALLIC GLASS MATRIX COMPOSITE[J]. 金属学报, 2010, 46(1): 41-46.
[11] LENG Chongyan ZHOU Rong ZHANG Xu LU Dehong LIU Hongxi . WEAR PERFORMANCE OF Ti6Al4V ALLOY MODIFIED BY Ag+Ta DUAL--ION IMPLANTATION[J]. 金属学报, 2009, 45(6): 764-768.
[12] LIU Hongxi; JIANG Yehua; ZHOU Rong; ZHOU Rongfeng; JIN Qinglin TANG Baoyin. ROLLING CONTACT FATIGUE LIFE AND MECHANICAL PROPERTY OF TiN FILM FABRICATED BY PLASMA IMMERSION ION IMPLANTATION[J]. 金属学报, 2008, 44(3): 325-330 .
[13] LIU Huiying WANG Xuejin WANG Langping WANG Xiaofeng AI Hongjun. INFLUENCE OF SURFACE MODIFICATION OF Ti BY FLUORINE ION-IMPLANTATION ON FORMATION AND EXPRESSION OF COLLAGEN-I ON OSTEOBLAST[J]. 金属学报, 2008, 44(12): 1485-1490.
[14] LIU Hongxi; WANG Langping; WANG Xiaofeng; HUANG Lei; TANG Baoyin. Effects of TiC Films on the Rolling Contact Fatigue Life and Mechanical Properties of Bearing Steel[J]. 金属学报, 2006, 42(11): 1197-1201 .
[15] CHEN Tao; CHANG Haiwei; LEI Mingkai. Surface Alloying Of Al Ion Implantation Into Fe Target At Elevated Temperature[J]. 金属学报, 2005, 41(4): 417-420 .
No Suggested Reading articles found!