Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (11): 1285-1293    DOI: 10.11900/0412.1961.2014.00189
Current Issue | Archive | Adv Search |
IRRADIATION EMBRITTLEMENT MECHANISMS AND RELEVANT INFLUENCE FACTORS OF NUCLEAR REACTOR PRESSURE VESSEL STEELS
LI Zhengcao(), CHEN Liang
Advanced Materials Laboratory, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
Download:  HTML  PDF(2517KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nuclear reactor pressure vessel is the irreplaceable component of the nuclear power plant and its integrity is one of the key issues of any nuclear power plant for long term operations. Various nanofeatures, including solute clusters, matrix damage and grain boundary segregation formed in reactor pressure vessel steels in the face of neutron irradiation. These ultrafine microstructural features lead to an increase in the ductile brittle transition temperature as is the measure used to describe the irradiation embrittlement. The balance of features depends on the composition of the reactor pressure vessel steels and the irradiation conditions. This paper reviews the current phenomenological knowledge and understanding of the basic mechanisms and relevant influence factors for irradiation embrittlement of nuclear reactor pressure vessel steels. To be specific, the formation and evolution processes of the embrittling features are presented. Also, the influences of material variables, such as copper, nickel and manganese contents on irradiation embrittlement and those of irradiation variables, such as neutron flux and post irradiation annealing are summarized. In addition, fundamental research issues that remain to be addressed are briefly pointed out.

Key words:  reactor pressure vessel      irradiation embrittlement      solute precipitation      matrix damage      grain boundary segregation     
Received:  26 June 2014     
ZTFLH:  TL341  
Fund: National Science and Technology Major Project (No.2011ZX06004-002)

Cite this article: 

LI Zhengcao, CHEN Liang. IRRADIATION EMBRITTLEMENT MECHANISMS AND RELEVANT INFLUENCE FACTORS OF NUCLEAR REACTOR PRESSURE VESSEL STEELS. Acta Metall Sin, 2014, 50(11): 1285-1293.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00189     OR     https://www.ams.org.cn/EN/Y2014/V50/I11/1285

Fig.1  Atom maps of the solute distributions in reactor pressure vessel (RPV) surveillance test specimens of Doel-1 of the dose 5.9×1019 n/cm2 (a) and Doel-2 of the dose 5.1×1019 n/cm2 (b)[22]
Fig.2  APT reconstitution of a small volume of the Fe-1.1Mn-0.7Ni (atomic fraction, %) alloy after neutron irradiation up to 0.2 dpa(Iron atoms are not represented for clarity of the image) (a), and enlargement of manganese (b) and nickel (c) enriched clusters[54]
Fig.3  Composition of the clusters formed in the simulation after 0.024 dpa in the Fe-1.2Mn-0.7Ni (atomic fraction, %) alloy, according to the simulation of neutron irradiation at 300 ℃[52]
Fig.4  TEM image of a neutron irradiation-induced microstructure in pure Fe at 0.2 dpa[54]
[1] Lambrecht M, Almazouzi A. J Phys: Conf Ser, 2011; 265: 012009
[2] Chai M S, Lai W S, Li Z C, Feng W. Acta Metall Sin (Eng Lett), 2012; 25: 29
[3] Odette G R, Lucas G E. Radiat Eff Defect Solids, 1998; 144: 189
[4] Miller M K, Russell K F. J Nucl Mater, 2007; 371: 145
[5] Hu Z, Li Z C, Zhou Z, Shi C Q, Schut H, Pappas K. J Phys: Conf Ser, 2014; 505: 012014
[6] Vincent E, Becquart C S, Pareige C, Pareige P, Domain C. J Nucl Mater, 2008; 373: 387
[7] Zhang Q, Li Z C, Lin C, Liu B X, Ma E. J Appl Phys, 2000; 87: 4147
[8] Phythian W J, English C A. J Nucl Mater, 1993; 205: 162
[9] Odette G R. J Nucl Mater, 1994; 212: 45
[10] Odette G R, Lucas G E. JOM, 2001; 53(7): 18
[11] Lv Z. Acta Metall Sin, 2011; 47: 777
(吕 铮. 金属学报, 2011; 47: 777)
[12] Yeli G M, Li Z C, Yu X Y, Zhang Z J. Rare Met, doi: 10.1007/s12598-013-0118-x
[13] Chaouadi R, Gérard R. J Nucl Mater, 2005; 345: 65
[14] Kameda J, Bevolo A J. Acta Metall, 1989; 37: 3283
[15] Lu Z, Faulkner R G, Flewitt P E J. Mater Sci Eng, 2006; A437: 306
[16] Glade S C, Wirth B D, Odette G R, Asoka-Kumar P. J Nucl Mater, 2006; 351: 197
[17] Fukuya K. J Nucl Sci Technol, 2013; 50: 213
[18] Buswell J T, Phythian W J, McElroy R J, Dumbill S, Ray P H N, Mace J, Sinclair R N. J Nucl Mater, 1995; 225: 196
[19] Liu C L, Odette G R, Wirth B D, Lucas G E. Mater Sci Eng, 1997; A238: 202
[20] Odette G R, Wirth B D. J Nucl Mater, 1997; 251: 157
[21] Miller M K, Chernobaeva A A, Shtrombakh Y I, Russell K F, Nanstad R K, Erak D Y, Zabusov O O. J Nucl Mater, 2009; 385: 615
[22] Toyama T, Nagai Y, Tang Z L, Hasegawa M, Almazouzi A, van Walle E, Gerard R. Acta Mater, 2007; 55: 6852
[23] Othen P J, Jenkins M L, Smith G D W. Philos Mag, 1994; 70A: 1
[24] Charleux M, Livet F, Bley F, Louchet F, Brechet Y. Philos Mag, 1996; 73A: 883
[25] Monzen R, Iguchi M, Jenkins M L. Philos Mag Lett, 2000; 80(3): 137
[26] Nicol A C, Jenkins M L, Kirk M A. Mater Res Soc Symp Proc, 1999; 540: 409
[27] Buswell J T, Bischler P J E, Fenton S T, Ward A E, Phythian W J. J Nucl Mater, 1993; 205: 198
[28] Arokiam A C, Barashev A V, Bacon D J, Osetsky Y N. Philos Mag, 2007; 87: 925
[29] Grosse M, Denner V, Bohmert J, Mathon M H. J Nucl Mater, 2000; 277: 280
[30] Ulbricht A, Boehmert J. Physica, 2004; 350B: E483
[31] Goodman S R, Brenner S S, Low J R. Metall Trans, 1973; 4: 2371
[32] Miller M K, Wirth B D, Odette G R. Mater Sci Eng, 2003; A353: 133
[33] Zhang C, Enomoto M, Yamashita T, Sano N. Metall Mater Trans, 2004; 35A: 1263
[34] Lozano-Perez S, Titchmarsh J M, Jenkins M L. Ultramicroscopy, 2006; 106(2): 75
[35] Sumiyama K, Yoshitake Y, Nakamura Y. Acta Metall, 1985; 33: 1785
[36] Wirth B D. PhD Dissertation, University of California Santa Barbara, 1995
[37] Fine M E, Liu J Z, Asta M D. Mater Sci Eng, 2007; A463: 271
[38] Miller M K, Hetherington M G. Surf Sci, 1991; 246: 442
[39] Vurpillot F, Bostel A, Blavette D. Appl Phys Lett, 2000; 76: 3127
[40] Blavette D, Vurpillot F, Pareige P, Menand A. Ultramicroscopy, 2001; 89: 145
[41] Morley A, Sha G, Hirosawa S, Cerezo A, Smith G D W. Ultramicroscopy, 2009; 109: 535
[42] Arokiam A C, Barashev A V, Bacon D J, Osetsky Y N. Philos Mag Lett, 2005; 85: 491
[43] Odette G R, Yamamoto T, Wirth B D. In: Ghoniem N M ed., Proc 2nd Int Conf on Multiscale Materials Modeling, University of California, 2004: 355
[44] Bergner F, Ulbricht A, Viehrig H W. Philos Mag Lett, 2009; 89: 795
[45] Wagner A, Ulbricht A, Bergner F, Altstadt E. Nucl Instrum Methods Phys Res, 2012; 280B: 98
[46] Lucas G E. J Nucl Mater, 2010; 407: 59
[47] Auger P, Pareige P, Akamatsu M, Blavette D. J Nucl Mater, 1995; 225: 225
[48] Odette G R, Nanstad R K. JOM, 2009; 61(7): 17
[49] Bonny G, Terentyev D, Bakaev A, Zhurkin E E, Hou M, Van Neck D, Malerba L. J Nucl Mater, 2013; 442: 282
[50] Radiguet B, Pareige P, Barbu A. Nucl Instrum Methods Phys Res, 2009; 267B: 1496
[51] Meslin E, Radiguet B, Pareige P, Toffolon C, Barbu A. Exp Mech, 2011; 51: 1453
[52] Ngayam-Happy R, Becquart C S, Domain C, Malerba L. J Nucl Mater, 2012; 426: 198
[53] Meslin E, Radiguet B, Pareige P, Barbu A. J Nucl Mater, 2010; 399: 137
[54] Meslin E, Lambrecht M, Hernandez-Mayoral M, Bergner F, Malerba L, Pareige P, Radiguet B, Barbu A, Gomez-Briceno D, Ulbricht A, Almazouzi A. J Nucl Mater, 2010; 406: 73
[55] Miller M K, Sokolov M A, Nanstad R K, Russell K F. J Nucl Mater, 2006; 351: 187
[56] Meslin E, Radiguet B, Loyer-Prost M. Acta Mater, 2013; 61: 6246
[57] Vincent E, Becquart C S, Domain C. J Nucl Mater, 2006; 359: 227
[58] Olsson P, Klaver T P C, Domain C. Phys Rev, 2010; 81B: 054102
[59] Hyde J M, Burke M G, Boothby R M, English C A. Ultramicroscopy, 2009; 109: 510
[60] Miller M K, Russell K F, Kocik J, Keilova E. J Nucl Mater, 2000; 282: 83
[61] Williams T J, Ellis D, Swan D I, McGuire J, Walley S P, English C A, Venables J H, de la cour Ray P H N. Proc 2nd Int Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Monterey: ANS, 1986: 323
[62] Williams T J, Burch P R, English C A, de la cour Ray P H N. Proc 3rd Int Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, New York: ASME, 1988: 121
[63] Malerba L. J Nucl Mater, 2006; 351: 28
[64] Terentyev D, Lagerstedt C, Olsson P, Nordlund K, Wallenius J, Becquart C, Malerba L. J Nucl Mater, 2006; 351: 65
[65] Fujii K, Fukuya K. J Nucl Mater, 2005; 336: 323
[66] Robertson I M, Jenkins M L, English C A. J Nucl Mater, 1982; 108: 209
[67] Horton L L, Bentley J, Farrell K. J Nucl Mater, 1982; 108: 222
[68] Hoelzer D T, Ebrahimi F. Mater Res Soc Symp Proc, 1994; 373: 57
[69] Nicol A C, Jenkins M L, Kirk M A. Mater Res Soc Symp Proc, 2000; 50: Paper R1.3
[70] Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H, Hasegawa M. Phys Rev, 2003; 67B: 224202
[71] Lambrecht M, Almazouzi A. J Nucl Mater, 2009; 385: 334
[72] Soisson F, Fu C C. Phys Rev, 2007; 76B: 214102
[73] Jourdan T, Soisson F, Clouet E, Barbu A. Acta Mater, 2010; 58: 3400
[74] Pareige P, Radiguet B, Barbu A. J Nucl Mater, 2006; 352: 75
[75] Lambrecht M, Malerba L, Almazouzi A. J Nucl Mater, 2008; 378: 282
[76] Yabuuchi K, Saito M, Kasada R, Kimura A. J Nucl Mater, 2011; 414: 498
[77] Fujii K, Ohkubo T, Fukuya K. J Nucl Mater, 2011; 417: 949
[78] Glade S C, Wirth B D, Odette G R, Asoka-Kumar P, Sterne P A, Howell R H. Philos Mag, 2005; 85: 629
[79] Nakata H, Fujii K, Fukuya K, Kasada R, Kimura A. J Nucl Sci Technol, 2006; 43: 785
[80] Bischler P J E, Wild R K. ASTM STP, 1996; 1270: 260
[81] McElroy R J, English C A, Foreman A J, Gage G, Hyde J M, Ray P H N, Vatter I A. ASTM STP, 1999; 1325: 296
[82] Kimura A, Shibata M, Kasada R, Fujii K, Fukuya K, Nakata H. ASTM STP, 2006; 1475: 212
[83] Nishiyama Y, Yamagushi M, Onizawa K, Iwase A, Matsuzawa H. J ASTM Int, 2009; 6: JAI10959
[84] Jones R B, Cowan J R, Corcoran R C, Walmsley J C. ASTM STP, 2000; 1366: 473
[85] Nikolaeva A V, Nikolaev Y A, Kryukov A M. J Nucl Mater, 1995; 218: 85
[86] Faulkner R G, Song S, Flewitt P E J, Victoria M, Marmy P. J Nucl Mater, 1998; 255: 189
[87] Lu Z, Faulkner R, Jones R, Flewitt P. ASTM STP, 2006; 1475: 180
[88] Nishiyama Y, Onizawa K, Suzuki M, Anderegg J W, Nagai Y, Toyama T, Hasegawa M, Kameda J. Acta Mater, 2008; 56: 4510
[89] Faulkner R G, Jones R B, Lu Z, Flewitt P E J. Philos Mag, 2005; 85: 2065
[90] English C A, Ortner S R, Gage G, Server W L, Rosinski S T. ASTM STP, 2001; 1405: 151
[91] Gurovich B A, Kuleshova E A, Shtrombakh Y I, Zabusov O O, Krasikov E A. J Nucl Mater, 2000; 279: 259
[92] Miller M K. J Mater Sci, 2006; 41: 7808
[93] Miller M K, Babu S S, Sokolov M A, Nanstad R K, Iskander S K. Mater Sci Eng, 2002; A327: 76
[94] Miller M K, Hetherington M G, Burke M G. Metall Trans, 1989; 20A: 2651
[95] Li Z C, Abe H, Sekimura N. J Nucl Mater, 2007; 362: 87
[96] Russell K C, Brown L M. Acta Metall, 1972; 20: 969
[97] Deschamps A, Militzer M, Poole W J. ISIJ Int, 2001; 41: 196
[98] Ma E, Atzmon M, Pinkerton F E. J Appl Phys, 1993; 74: 955
[99] Fine M E, Isheim D. Scr Mater, 2005; 53: 115
[100] Bacon D J, Osetsky Y N. Philos Mag, 2009; 89: 3333
[101] Harry T, Bacon D J. Acta Mater, 2002; 50: 209
[102] Shtrombakh Y I, Gurovich B A, Kuleshova E A, Maltsev D A, Fedotova S V, Chernobaeva A A. J Nucl Mater, 2014; 452: 348
[103] Cerezo A, Hirosawa S, Rozdilsky I, Smith G. Philos Trans R Soc London, 2003; 361A: 463
[104] Kryukov A M, Nikolaev Y A, Nikolaeva A V. Nucl Eng Des, 1998; 186: 353
[105] Bergner F, Lambrecht M, Ulbricht A, Almazouzi A. J Nucl Mater, 2010; 399: 129
[106] Hernández-Mayoral M, Gómez-Briceño D. J Nucl Mater, 2010; 399: 146
[107] Chaouadi R, Gerard R. J Nucl Mater, 2011; 418: 137
[108] Fukuya K, Ohno K, Nakata H, Dumbill S, Hyde J M. J Nucl Mater, 2003; 312: 163
[109] Fujii K, Fukuya K, Hojo T. J Nucl Sci Technol, 2013; 50: 160
[110] Eason E D, Wright J E, Nelson E E, Odette G R, Mader E V. Nucl Eng Des, 1998; 179: 257
[111] Miller M K, Nanstad R K, Sokolov M A, Russell K F. J Nucl Mater, 2006; 351: 216
[112] Miller M K, Russell K F. J Nucl Mater, 1997; 250: 223
[113] Ulbricht A, Bergner F, Boehmert J, Valo M, Mathon M H, Heinemann A. Philos Mag, 2007; 87: 1855
[114] Bohmert J, Viehrig H W, Ulbricht A. J Nucl Mater, 2001; 297: 251
[115] Ulbricht A, Bergner F, Dewhurst C D, Heinemann A. J Nucl Mater, 2006; 353: 27
[116] Ulbricht A, Altstadt E, Bergner F, Viehrig H W, Keiderling U. J Nucl Mater, 2011; 416: 111
[117] Wagner A, Bergner F, Ulbricht A, Dewhurst C D. J Nucl Mater, 2013; 441: 487
[118] Wang W P, Li Z C, Zhang Z J, Zhang C H. Nucl Instrum Methods Phys Res, 2014; 334B: 96
[119] Bergner F, Ulbricht A, Lindner P, Keiderling U, Malerba L. J Nucl Mater, 2014; 454: 22
[120] Liu J, Yao H J, Sun Y M, Duan J L, Hou M D, Mo D, Wang Z G, Jin Y F, Abe H, Li Z C, Sekimura N. Nucl Instrum Methods Phys Res, 2006; 245: 126
[121] Li Z C, Yu X Y, Miao W, Zhang Z J. Rare Met, 2011; 30: 258
[122] Latourte F, Salez T, Guery A, Rupin N, Mahe M. J Nucl Mater, 2014; 454: 373
[123] Wells P B, Yamamoto T, Miller B, Milot T, Cole J, Wu Y, Odette G R. Acta Mater, 2014; 80: 205
[1] Tianci ZHANG, Haitao WANG, Zhengcao LI, Henk SCHUT, Zhengming ZHANG, Ming HE, Yuliang SUN. Positron Annihilation Investigation of Embrittlement Behavior in Chinese RPV Steels after Fe-Ion Irradiation[J]. 金属学报, 2018, 54(4): 512-518.
[2] XU Gang CAI Linling FENG Liu ZHOU Bangxin LIU Wenqing WANG Junan. SEGREGATION OF ATOMS ON THE INTERFACES IN THE RPV MODEL STEEL STUDIED BY APT[J]. 金属学报, 2012, 48(7): 789-796.
[3] XU Gang, CAI Linling, FENG Liu, ZHOU Bangxin,WANG Jun'an,ZHANG Haisheng. EFFECT OF THE PRECIPITATION OF Cu-RICH CLUSTERS ON THE DBTT OF RPV SIMULATED STEEL[J]. 金属学报, 2012, 48(6): 753-758.
[4] XU Gang, CAI Linling, FENG Liu, ZHOU Bangxin,LIU Wenqing, WANG Jun'an. STUDY ON THE PRECIPITATION OF Cu-RICH CLUSTERS IN THE RPV MODEL STEEL BY APT[J]. 金属学报, 2012, 48(4): 407-413.
[5] ZHONG Weihua TONG Zhenfeng ZHANG Changyi QIAO Jiansheng YANG Wen. SMALL PUNCH TESTING OF THE EFFECT OF IRRADIATION ON MECHANICAL PROPERTY OF RPV STEEL[J]. 金属学报, 2011, 47(9): 1205-1209.
[6] LU Zheng. RADIATION-NDUCED EMBRITTLEMENT AND LIFE EVALUATION OF REACTOR PRESSURE VESSELS[J]. 金属学报, 2011, 47(7): 777-783.
[7] XU Gang CHU Dafeng CAI Linling ZHOU Bangxin WANG Wei PENG Jianchao. INVESTIGATION ON THE PRECIPITATION AND STRUCTURAL EVOLUTION OF Cu-RICH NANOPHASE IN RPV MODEL STEEL[J]. 金属学报, 2011, 47(7): 905-911.
[8] SONG Renguo; ZHANG Baojin; ZENG Meiguang(Northeastern University; Shenyang 110006)(State Key Laboratory of Solidification Processing; Northwestern PolytechnicalUniversity; Xi'an 710072). THE STRESS CORROSION AND ROLE OF Mg SEGREGATED TO GRAIN BOUNDARY IN 7175 ALUMINIUM ALLOY[J]. 金属学报, 1997, 33(6): 595-601.
[9] WANG Wendong; ZHANG Sanhong; HE Xinlai(University of Science and Technology Beijing; 100083)(Manuscript received 93-09-21. in revised form 94-01-26). DIFFUSION OF BORON IN Fe-BASE AND Ni-BASE ALLOYS[J]. 金属学报, 1995, 31(2): 56-63.
[10] D U Guowei;WANG Zheng;ZHANG Dezhi;XIAO Jimei(University of Science and Technology Beijing)(Manuscript received 27 January;1994). HIGH TEMPERATURE INTERGRANULAR EMBRITTLEMENT OF Ni_3Al-Cr-Zr-B-Mg ALLOY[J]. 金属学报, 1994, 30(9): 394-398.
[11] LU Feng;CAO Fengyu;LI Chengji;ZHANG Yongxiang;CHEn Yonggang University of Science and Technology Beijing Beijing Institute of Machine Tools Correspondent Faculty of Metallograph; University of Science of and technology Beijing; Beijing 100083. ALLOYING BEHAVIOUR OF Ca IN 58CrV STEEL[J]. 金属学报, 1992, 28(6): 7-12.
[12] ZHANG Dongbin;WU Chengjian;YANG Rang University of Sciencs and Technology Beijing. GRAIN BOUNDARY SEGREGATION OF P IN Fe-P AND Fe-P-Ce ALLOYS AND EFFECT ON THEIR BRITTLENESS[J]. 金属学报, 1991, 27(2): 33-36.
[13] LI Guangfu;WU Rengeng Harbin Institute of Technology Ll Guangfu; Division of Metallography; Harbin Institute of Technology; Harbin 150006. IMPROVEMENT ON SUSCEPTIBILITY OF ULTRA-HIGH STRENGTH STEEL TO STRESS CORROSION CRACKING BY HIGH TEMPERATURE QUENCHING[J]. 金属学报, 1989, 25(6): 70-73.
[14] HU Benfu;TAKAHASHI Heishichiro;TAKEYAMA Taro Beijing University of Iron and Steel Technology; Hokkaido University; JapanBeijing University of Iron and Steel Technology;Xueyuan Rd.; Beijing. VOID SWELLING AND GRAIN BOUNDARY SEGREGATION INDUCED BY ELECTRON IRRADIATION IN Fe-Cr-Ni AUSTENITE ALLOY[J]. 金属学报, 1988, 24(3): 180-186.
[15] ZHANG Dongbin Beijing University of Iron and Steel Technology WU Chengjian Department of Materials Science;Beijing University of Iron and Steel Technology. BEHAVIOR OF CERIUM IN GRAIN BOUNDARY SEGREGATION AND ITS INFLUENCE ON EQUILIBRIUM SEGREGATION OF PHOSPHORUS AT GRAIN BOUNDARIES IN α-IRON[J]. 金属学报, 1988, 24(2): 100-105.
No Suggested Reading articles found!