Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (8): 939-950    DOI: 10.11900/0412.1961.2018.00405
Current Issue | Archive | Adv Search |
Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor
Yucheng WU1,2,3()
1. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2. National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei University of Technology, Hefei 230009, China
3. Key Laboratory of Interface Science and Engineering of New Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
Cite this article: 

Yucheng WU. Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor. Acta Metall Sin, 2019, 55(8): 939-950.

Download:  HTML  PDF(10703KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Controlled thermonuclear fusion energy, regarded as the ultimate and ideal energy source, is considered as the principle way to effectively solve the future energy problem because of its cleaning and abundant raw materials. In the actual fusion reaction process, plasma facing materials (PFMs) will have to face the extremely harsh and severe environment. W and its alloys are the most promising PFMs candidate materials for the present reference design. However, due to its low-temperature brittleness, recrystallization brittleness, radiation-reduced brittleness and other disadvantages, they are still far from all the requirements of PFMs. In this paper, the principles of damage behavior under different irradiation particles were described in detail, and the research progress in related fields in recent years was also reviewed, in order to provide references for the research on the irradiation of W-based materials in the future.

Key words:  nuclear fusion      W      plasma facing material      irradiation damage     
Received:  31 August 2018     
ZTFLH:  TL34  
Fund: Magnetic Confinement Fusion Program of National Key Basic Research Project of China(No.2014GB121001B);National Natural Science Foundation of China((Nos.51474083, 51574101, 51674095 and 51675154));Sand Program of Introducing Talents of Discipline to Universities of China(No.B18018)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00405     OR     https://www.ams.org.cn/EN/Y2019/V55/I8/939

Fig.1  The formation of interstitial He atom monolayer structure containing two to nine He atoms between tungsten (110) planes (a~h)[19]Color online
Fig.2  The formation process of coral-like nano-fuzzes due to the diffusion and coalescence of He atoms in the W sub-surface layer (a~c) and the formation process of tree-like nano-fuzzes due to the diffusion and coalescence of He atoms in W surface layer at a relatively high temperature (>1300~1500 K) (d~f)[28]
Fig.3  TEM observation of the microstructures in W-TiC alloys and commercial W irradiated with 5 keV He at 900 ℃ using an ion accelerator-TEM system[36]
Fig.4  Cross section of fuzz in W (a), W-3%Re (b) and W-5%Re (c) and plot of the variation of fuzz depth with rhenium concentration (d), and SEM images of fuzz in W (e), W-3%Re (f), W-5%Re (g) for samples exposed for 400 s at a flux of 1024 m-2·s-1 and temperature of 1400 ℃ in Pilot PSI[37]
Fig.5  Atomic configuration and the isosurface of optimal charge for H for different numbers of embedded H atoms at the monovacancy[45](a) 2H (b) 4H (c) 6H (d) 8H (e) 8H (metastable) (f) 10H
Fig.6  Hydrogen bubble density and average diameter (a) and bubble distribution at different diameters (b) for specimens irradiated at temperature 500 ℃, 600 ℃, 800 ℃ to a same dose of 2.25×1021 m-2 [47]
Fig.7  Schematic microstructural evolution sequence for fast neutron irradiation of W (Circles represent voids, black loops represent interstitial dislocation loops, red sticks represent elongated Re-rich precipitates)[64,65]
Fig.8  Radiation-induced hardening contributions due to different measured defects based on the linear superposition of the dispersed barrier hardening model for the samples. The x- and y- axes are not linear scaled[67]
Fig.9  TDS emission spectra for undamaged sample (black dashed line), damaged to 0.2 dpa at 300 K (blue line) and at 1240 K (red line). Data obtained with a TDS temperature ramp rate of 0.5 K/s[79]
[1] Arnoux R. Which was the first “tokamak”—or was it “tokomag”? 27 Oct. 2008, https://www.iter.org/newsline/55/1194
[2] Wang L. Experimental Physics of Magnetic Confinement Plasmas [M]. Beijing: Science Press, 2018: 23
[2] (王龙. 磁约束等离子体实验物理 [M]. 北京: 科学出版社, 2018: 23)
[3] Ongena J, Ogawa Y. Nuclear fusion: Status report and future prospects [J]. Energy Policy, 2016, 96: 770
[4] Li J G. The status and progress of tokamak research [J]. Physics, 2016, 45: 88
[4] (李建刚. 托卡马克研究的现状及发展 [J]. 物理, 2016, 45: 88)
[5] Pitts R A, Carpentier S, Escourbiac F, et al. Physics basis and design of the ITER plasma-facing components [J]. J. Nucl. Mater., 2011, 415: 957
[6] Luo L M, Shi J, Zan X, et al. Current status and development trend on alloying elements-doped plasma-facing tungsten-based materials [J]. Chin. J. Nonferrous Met., 2016, 26: 1889
[6] (罗来马, 施静, 昝祥等. 掺杂合金元素面向等离子体钨基材料的研究现状与发展趋势 [J]. 中国有色金属学报, 2016, 26: 1889)
[7] Zhang S W, Wen Y, Zhang H J. Low temperature preparation of tungsten nanoparticles from molten salt [J]. Powder Technol., 2014, 253: 464
[8] Tokar M Z, Coenen J W, Philipps V, al et, the TEXTOR Team. Tokamak plasma response to droplet spraying from melted plasma-facing components [J]. Nucl. Fusion, 2012, 52: 013013
[9] Kurishita H, Kobayashi S, Nakai K, et al. Current status of ultra-fine grained W-TiC development for use in irradiation environments [J]. Phys. Scr., 2007, T128: 76
[10] Xu A, Beck C, Armstrong D E J, et al. Ion-irradiation-induced clustering in W-Re and W-Re-Os alloys: A comparative study using atom probe tomography and nanoindentation measurements [J]. Acta Mater., 2015, 87: 121
[11] El-Atwani O, Hinks J A, Greaves G, et al. In-situ TEM observation of the response of ultrafine- and nanocrystalline- grained tungsten to extreme irradiation environments [J]. Sci. Rep., 2014, 4: 4716
[12] Shen T D, Gao X H, Yu K Y. Progress in radiation tolerant nanomaterials [J]. J. Yanshan Univ., 2014, 38: 283
[12] (沈同德, 高欣海, 于开元. 抗辐照纳米材料的研究进展 [J]. 燕山大学学报, 2014, 38: 283)
[13] Guo L P, Luo F F, Yu Y X. Dislocation Loops in Irradiated Nuclear Materials [M]. Beijing: National Defend Industry Press, 2017: 185
[13] (郭立平, 罗凤凤, 于雁霞. 核材料辐照位错环 [M]. 北京: 国防工业出版社, 2017: 185)
[14] Yang Q, Fan H Y, Ni W Y, et al. Observation of interstitial loops in He+ irradiated W by conductive atomic force microscopy [J]. Acta Mater., 2015, 92: 178
[15] Gao L, von Toussaint U, Jacob W, et al. Suppression of hydrogen-induced blistering of tungsten by pre-irradiation at low temperature [J]. Nucl. Fusion, 2014, 54: 122003
[16] Zibrov M, Balden M, Morgan T W, et al. Deuterium trapping and surface modification of polycrystalline tungsten exposed to a high-flux plasma at high fluences [J]. Nucl. Fusion, 2017, 57: 046004
[17] Tan X Y, Luo L M, Chen H Y, et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation [J]. Sci. Rep., 2015, 5: 12755
[18] Baldwin M J, Doerner R P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions [J]. Nucl. Fusion, 2008, 48: 035001
[19] You Y W, Li D D, Kong X S, et al. Clustering of H and He, and their effects on vacancy evolution in tungsten in a fusion environment [J]. Nucl. Fusion, 2014, 54: 103007
[20] Iwakiri H, Yasunaga K, Morishita K, et al. Microstructure evolution in tungsten during low-energy helium ion irradiation [J]. J. Nucl. Mater., 2000, 283-287: 1134
[21] Becquart C S, Domain C. Migration energy of He in W revisited by Ab initio calculations [J]. Phys. Rev. Lett., 2006, 97: 196402
[22] Yoshida N, Iwakiri H, Tokunaga K, et al. Impact of low energy helium irradiation on plasma facing metals [J]. J. Nucl. Mater., 2005, 337-339: 946
[23] Alimov V K, Roth J. Hydrogen isotope retention in plasma-facing materials: Review of recent experimental results [J]. Phys. Scr., 2007, T128: 6
[24] Valles G, Martin-Bragado I, Nordlund K, et al. Temperature dependence of underdense nanostructure formation in tungsten under helium irradiation [J]. J. Nucl. Mater., 2017, 490: 108
[25] Wirtz M, Berger M, Huber A, et al. Influence of helium induced nanostructures on the thermal shock performance of tungsten [J]. Nucl. Mater. Energy, 2016, 9: 177
[26] Tokunaga K, Fujiwara T, Ezato K, et al. Effects of helium implantation on damage during pulsed high heat loading of tungsten [J]. J. Nucl. Mater., 2007, 367-370: 812
[27] Hammond K D. Helium, hydrogen, and fuzz in plasma-facing materials [J]. Mater. Res. Express, 2017, 4: 104002
[28] Liu L, Liu D P, Hong Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions [J]. J. Nucl. Mater., 2016, 471: 1
[29] Ito A M, Takayama A, Oda Y, et al. Molecular dynamics and Monte Carlo hybrid simulation for fuzzy tungsten nanostructure formation [J]. Nucl. Fusion, 2015, 55: 073013
[30] Yi X O, Arakawa K, Nguyen-Manh D, et al. A study of helium bubble production in 10 keV He+ irradiated tungsten [J]. Fusion Eng. Des., 2017, 125: 454
[31] Gonderman S, Tripathi J K, Novakowski T J, et al. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions [J]. J. Nucl. Mater., 2017, 491: 199
[32] Takamura S, Ohno N, Nishijima D, et al. Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation [J]. Plasma Fusion Res., 2006, 1: 051
[33] Baldwin M J, Doerner R P. Formation of helium induced nanostructure 'fuzz' on various tungsten grades [J]. J. Nucl. Mater., 2010, 404: 165
[34] Lin J S, Luo L M, Xu Q, et al. Microstructure and deuterium retention after ion irradiation of W-Lu2O3 composites [J]. J. Nucl. Mater., 2017, 490: 272
[35] Kurishita H, Kobayashi S, Nakai K, et al. Development of ultra-fine grained W-(0.25—0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations [J]. J. Nucl. Mater., 2008, 377: 34
[36] Xu Q, Ding X Y, Luo L M, et al. Thermal stability and evolution of microstructures induced by He irradiation in W-TiC alloys [J]. Nucl. Mater. Energy, 2018, 15: 76
[37] Khan A, De Temmerman G, Morgan T W, et al. Effect of rhenium addition on tungsten fuzz formation in helium plasmas [J]. J. Nucl. Mater., 2016, 474: 99
[38] Roth J, Schmid K. Hydrogen in tungsten as plasma-facing material [J]. Phys. Scr., 2011, T145: 014031
[39] Henriksson K O E, Nordlund K, Krasheninnikov A, et al. Difference in formation of hydrogen and helium clusters in tungsten [J]. Appl. Phys. Lett., 2005, 87: 163113
[40] Heinola K, Ahlgren T, Nordlund K, et al. Hydrogen interaction with point defects in tungsten [J]. Phys. Rev., 2010, 82B: 094102
[41] Johnson D F, Carter E A. Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion [J]. J. Mater. Res., 2010, 25: 315
[42] You Y W, Kong X S, Wu X B, et al. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals [J]. AIP Adv., 2013, 3: 012118
[43] Guerrero C, González C, Iglesias R, et al. First principles study of the behavior of hydrogen atoms in a W monovacancy [J]. J. Mater. Sci., 2016, 51: 1445
[44] Ohsawa K, Eguchi K, Watanabe H, et al. Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals [J]. Phys. Rev., 2012, 85B: 094102
[45] Liu Y L, Zhang Y, Zhou H B, et al. Vacancy trapping mechanism for hydrogen bubble formation in metal [J]. Phys. Rev., 2009, 79B: 172103
[46] Zhou H B, Liu Y L, Jin S, et al. Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: From dissolution and diffusion to a trapping mechanism [J]. Nucl. Fusion, 2010, 50: 025016
[47] Hu W H, Luo F F, Shen Z Y, et al. Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions [J]. Fusion Eng. Des., 2015, 90: 23
[48] Huber A, Sergienko G, Wirtz M, et al. Deuterium retention in tungsten under combined high cycle ELM-like heat loads and steady-state plasma exposure [J]. Nucl. Mater. Energy, 2016, 9: 157
[49] Wang W M, Roth J, Lindig S, et al. Blister formation of tungsten due to ion bombardment [J]. J. Nucl. Mater., 2001, 299: 124
[50] Alimov V K, Hatano Y, Sugiyama K, et al. Surface morphology and deuterium retention in tungsten and tungsten-rhenium alloy exposed to low-energy, high flux D plasma [J]. J. Nucl. Mater., 2014, 454: 136
[51] Chen H Y, Luo L M, Chen J B, et al. Effects of zirconium element on the microstructure and deuterium retention of W-Zr/Sc2O3 composites [J]. Sci. Rep., 2016, 6: 32678
[52] Taylor C N, Shimada M, Merrill B J. Deuterium retention and blistering in tungsten foils [J]. Nucl. Mater. Energy, 2017, 12: 689
[53] Haasz A A, Poon M, Davis J W, et al. The effect of ion damage on deuterium trapping in tungsten [J]. J. Nucl. Mater., 1999, 266-269: 520
[54] Ogorodnikova O V. Fundamental aspects of deuterium retention in tungsten at high flux plasma exposure [J]. J. Appl. Phys., 2015, 118: 074902
[55] Ogorodnikova O V, Markelj S, von Toussaint U. Interaction of atomic and low-energy deuterium with tungsten pre-irradiated with self-ions [J]. J. Appl. Phys., 2016, 119: 054901
[56] Iwakiri H, Morishita K, Yoshida N. Effects of helium bombardment on the deuterium behavior in tungsten [J]. J. Nucl. Mater., 2002, 307-311: 135
[57] Nishijima D, Sugimoto T, Iwakiri H, et al. Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure [J]. J. Nucl. Mater., 2005, 337-339: 927
[58] Sakoi Y, Miyamoto M, Ono K, et al. Helium irradiation effects on deuterium retention in tungsten [J]. J. Nucl. Mater., 2013, 442: S715
[59] Liu X, Ma J M, Guo H B. Neutron irradiation damage for first wall materials in hybrid reactor [J]. High Power Laser Part. Beams, 2015, 27(1): 016010
[59] ((刘 晓, 马纪敏, 郭海兵. 混合堆第一壁中子辐照损伤模拟 [J]. 强激光与粒子束, 2015, 27(1): 016010)
[60] Williams R K, Wiffen F W, Bentley J, et al. Irradiation induced precipitation in tungsten based, W-Re alloys [J]. Metall. Trans., 1983, 14A: 655
[61] Fukuda M, Yabuuchi K, Nogami S, et al. Microstructural development of tungsten and tungsten-rhenium alloys due to neutron irradiation in HFIR [J]. J. Nucl. Mater., 2014, 455: 460
[62] Tanno T, Hasegawa A, He J C, et al. Effects of transmutation elements on neutron irradiation hardening of tungsten [J]. Mater. Trans., 2007, 48: 2399
[63] Gilbert M R, Sublet J C. Neutron-induced transmutation effects in W and W-alloys in a fusion environment [J]. Nucl. Fusion, 2011, 51: 043005
[64] Marian J, Becquart C S, Domain C, et al. Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions [J]. Nucl. Fusion, 2017, 57: 092008
[65] Hasegawa A, Fukuda M, Yabuuchi K, et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys [J]. J. Nucl. Mater., 2016, 471: 175
[66] Xu A, Armstrong D E J, Beck C, et al. Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study [J]. Acta Mater., 2017, 124: 71
[67] Hu X X, Koyanagi T, Fukuda M, et al. Irradiation hardening of pure tungsten exposed to neutron irradiation [J]. J. Nucl. Mater., 2016, 480: 235
[68] Fukuda M, Kumar N A P K, Koyanagi T, et al. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten [J]. J. Nucl. Mater., 2016, 479: 249
[69] Tanno T, Fukuda M, Nogami S, et al. Microstructure development in neutron irradiated tungsten alloys [J]. Mater. Trans., 2011, 52: 1447
[70] Liu C S, Wu X B, Yu Y W, et al. First-principles study of hydrogen and helium behaviors of plasma-facing tungsten in nuclear fusion reactors [J]. J. Anhui Normal Univ. (Nat. Sci.), 2016, 39: 307
[70] (刘长松, 吴学邦, 尤玉伟等. 核聚变堆面向等离子体钨基材料氢氦效应的第一性原理研究 [J]. 安徽师范大学学报(自然科学版), 2016, 39: 307)
[71] Shimada M, Hatano Y, Calderoni P, et al. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE [J]. J. Nucl. Mater., 2011, 415: S667
[72] Yi X O, Jenkins M L, Kirk M A, et al. In-situ TEM studies of 150 keV W+ ion irradiated W and W-alloys: Damage production and microstructural evolution [J]. Acta Mater., 2016, 112: 105
[73] Hasenhuetl E, Zhang Z X, Yabuuchi K, et al. Effect of displacement damage level on the ion-irradiation affected zone evolution in W single crystals [J]. J. Nucl. Mater., 2017, 495: 314
[74] Yi X O, Jenkins M L, Hattar K, et al. Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations [J]. Acta Mater., 2015, 92: 163
[75] Luo L M, Xu M Y, Zan X, et al. Progress in irradiation damage of tungsten and tungsten alloys under different irradiation particles [J]. Mater. Rev., 2018, 32: 41
[75] (罗来马, 徐梦瑶, 昝祥等. 不同辐照粒子下钨及钨合金辐照损伤行为的研究进展 [J]. 材料导报, 2018, 32: 41)
[76] Seeger A, Schumacher D, Schilling W, et al. Vacancies and Interstitials in Metals [M]. Amsterdam: North Holland Publishing Co, 1970: 1
[77] Kong F H, Qu M, Yan S, et al. Influence of Au ions irradiation damage on helium implanted tungsten [J]. Nucl. Instrum. Methods Phys. Res., 2017, 409B: 192
[78] Wang H W, Gao Y, Fu E G, et al. Effect of high fluence Au ion irradiation on nanocrystalline tungsten film [J]. J. Nucl. Mater., 2013, 442: 189
[79] Tynan G R, Doerner R P, Barton J, et al. Deuterium retention and thermal conductivity in ion-beam displacement-damaged tungsten [J]. Nucl. Mater. Energy, 2017, 12: 164
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[10] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[14] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[15] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
No Suggested Reading articles found!