Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (4): 351-356     DOI:
Research Articles Current Issue | Archive | Adv Search |
Influence Of Hot Working Process On Microstructures Of Superalloy GH4586
ZHANG Beijiang; ZHAO Guangpu; JIAO Lanying; XU Guohua; QIN Heyong; FENG Di
High Temperature Materials Division; Central Iron and Steel Research Institute; Beijing 100081
Cite this article: 

ZHANG Beijiang; ZHAO Guangpu; JIAO Lanying; XU Guohua; QIN Heyong; FENG Di. Influence Of Hot Working Process On Microstructures Of Superalloy GH4586. Acta Metall Sin, 2005, 41(4): 351-356 .

Download:  PDF(556KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of temperature, strain rate and plastic strain on flow behavior and microstructures of GH4586 wrought superalloy were investigated by compressive deformation performed on MTS machine at deformation temperatures of 950 to 1150℃ and strain rates of 0.001 to 1 s-1. The results show that the flow stress increases drastically with the decrease of deformation temperature and the increase of strain rate. Dynamic recrystallization process can be effectively promoted by increasing deformation temperature. When deformation temperature is higher than 1100℃, completely recrystallized microstructures can be obtained with engineering strain of 30%, while when the temperature is lower than 1050℃, dynamic recrystallization does not occur with engineering strain up to 40\%. Grain size of annealed microstructures increases with the increase of deformation temperature. Ideal plasticity and resultant microstructures can be achieved by effective control of deformation temperature.
Key words:  plastic deformation      flow stress      dynamic recrystallization      
Received:  27 May 2004     
ZTFLH:  TG111.7  
  TG113.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I4/351

[1]Zhao G P. Acta Metall Sin, 1995; 31(Suppl.): S193 (赵光普.金属学报,1995;31(增刊):S193)
[2]Xie S S, Wang T L, Lu J Y. Mater Sci Technol, 1999; 15(5): 411
[3]Xian M Z. Acta Metall Sin, 1999; 35(Suppl): S85 (羡梦芝.金属学报, 1999;35(增刊):S85)
[4]Cui T, Wang L, Lu J Y, Yang H C, Zhao G P. J Iron Steel Res, 2003; 15(7): 21 (崔彤,王磊,吕俊英,杨洪才,赵光普.钢铁研究学报, 2003;15(7):21)
[5]Meyers M A, Benson D J, Vohringer O, Kad B K, Xue Q, Fu H H. Mater Sci Eng, 2002; A322: 194
[6]Cheng L M, Poole W J, Embury J D, Lloyd D J. Metall Mater Trans, 2003; 34A: 2473
[7]Mecking H, Kocks U F. Acta Metall, 1981; 29: 1865
[8]Martin J L, Piccolo B L, Kruml T, Bonneville J. Mater Sci Eng, 2002; 322A: 118
[9]Walgraef D. Mater Sci Eng, 2002; 322A: 167
[10]Tian B, Zickler G A, Lind C, Paris O. Acta Mater, 2003; 51: 4149
[11]Verdier M, Brechet Y, Guyot P. Acta Mater, 1999; 47: 127
[12]Sakai T, Ohashi M, Jonas J J. Acta Metall, 1988; 36: 1781
[13]Whillock R J, Buckley R A, Sellars C M. Mater Sci Eng, 2000; 276A: 124
[14]Speer J G, Hasen S S. Metall Trans, 1989; 20A: 25
[15]McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43
[16]Weertman J. J Appl Phys, 1957; 28: 362
[17]Bruni C, Forcellese A, Gabrielli F. Mater Sci Technol, 2002; 125: 242
[18]Siddall R J, Eggar J W. Mater Sci Technol, 1986; 2: 728
[19]Wahabi M E, Cabrera J M, Prado J M. Mater Sci Eng, 2003; A343: 116
[20]Ryan N D, McQueen H J. J Mech Working Technol, 1986; 12: 279
[21]Kim S I, Lee Y, Lee D L, Yoo Y C. Mater Sci Eng, 2003; A355: 384
[22]Livesey D W, Sellars C M. Mater Sci Technol, 1985; 1: 136
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[3] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[6] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[7] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[8] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[11] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[12] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[13] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[14] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[15] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
No Suggested Reading articles found!