Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (4): 357-362     DOI:
Research Articles Current Issue | Archive | Adv Search |
Low Cycle Fatigue Behavior Of Cast Nickel Base Superalloy K52
YAO Jun; GUO Jianting; YUAN Chao; LI Zhijun
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang110016
Cite this article: 

YAO Jun; GUO Jianting; YUAN Chao; LI Zhijun. Low Cycle Fatigue Behavior Of Cast Nickel Base Superalloy K52. Acta Metall Sin, 2005, 41(4): 357-362 .

Download:  PDF(466KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Low cycle fatigue (LCF) behaviors of cast nickel-base superalloy K52 at different temperatures were investigated, and the fatigue parameters were given by analyzing its cyclic stress-strain curves and strain-life curves. Cyclic stress response curves show that the alloy exhibited cyclic hardening and softening behaviors at room temperature and 900℃, respectively. OM and SEM observations indicated that LCF cracks initiated predominantly on the surface of specimen or at the near-surface defects. Once initiated, cracks would propagate perpendicularly to the loading direction and the specimens exhibited transgranular fracture.
Key words:  K52 superalloy      low cycle fatigue      cyclic stress response      
Received:  09 October 2004     
ZTFLH:  TG111.8  
  TG146.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I4/357

[1]Miller H E, Chambers W L. In: Sims C T, Ctoloff N S, Hagel W G, eds., Superalloy Ⅱ, New York: John-Wiley & Sons, 1987: 18
[2]Reuchet J, Remy L. Mater Sci Eng, 1983; 58: 19
[3]Bhanu Sankara Rao K, Schiffers H, Schuster H, Nickel H. Metall Trans, 1988; A19: 359
[4]Valsan M, Shastry D H, Bhanu Sankara Rao K, Mannan S L. Metall Trans, 1994; 25A: 159
[5]Li S X, Smith D J. Fatigue Fract Eng Mater Struct, 1995; 18: 631
[6]Lerch B A, Gerold V. Metall Trans, 1987; ISA: 2135
[7]Valsan M, Paramewaran P, Bhanu Sankara Rao K, Vijay alakshmi M, Mannan S L, Sastry D H. Metall Trans, 1992; 23A(6): 1751
[8]Gayda J, Miner R V. Int J Fatigue, 1983; 5: 135
[9]Burke M A, Beck C G. Metall Trans, 1984; 15A: 661
[10]Standard E606. In: Annual Book of ASTM Standards, Philadelphia, PA: ASTM, 1996; 03.01
[11]Chen L J, Wang Z G, Yao G, Tian J F. Acta Metall Sin, 1999; 35: 1144 (陈立佳,王中光,姚戈,田继丰.金属学报,1999;35:1144)
[12]Yang F M, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2002; 38: 1047 (杨富民,孙晓峰,管恒荣,胡壮麒.金属学报,2002;38:1047)
[13]Guo J T, Ranucci D, Picco E. Mater Sci Eng, 1983; 58: 127
[14]Guo J T, Ranucci D, Picco E, Strocchi P M. Int J Fatigue, 1984; 6: 95
[15]Hwang S K, Lee H N, Yoon B H. Metall Trans, 1989; 20A: 2793
[16]Antolovich S D, Liu S, Baur R. Metall Trans, 1981; 12A: 473
[17]Calabrese C, Larid C. Mater Sci Eng, 1974; 13: 141
[18]Remy L, Reuchet J. Mater Sci Eng, 1983; 58: 19
[19]Fournier D, Pineau A. Metall Trans, 1977; 8A: 1095P
[1] Jinlan AN,Lei WANG,Yang LIU,Guohua XU,Guangpu ZHAO. INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2015, 51(7): 835-843.
[2] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[3] YU Huichen, DONG Chengli, JIAO Zehui, KONG Fantao, CHEN Yuyong, SU Yongjun. HIGH TEMPERATURE CREEP AND FATIGUE BEHAVIOR AND LIFE PREDICTION METHOD  OF A TiAl ALLOY[J]. 金属学报, 2013, 49(11): 1311-1317.
[4] CHEN Lijia WANG Xin ZHI Ying XU Yanwu. LOW--CYCLE FATIGUE BEHAVIOR OF AS--EXTRUDED Mg--x%Al--3%Ni ALLOYS[J]. 金属学报, 2009, 45(7): 856-860.
[5] HUANG Zhiwei; YUAN Fuhe; WANG Zhongguang; ZHU Shijie; WANG Fugang. Low Cycle Fatigue Behavior of A Cast Nickel Base Superalloy M963 at Elevated Temperature[J]. 金属学报, 2007, 43(7): 678-682 .
[6] . [J]. 金属学报, 2007, 43(10): 1025-1030 .
[7] Chen Ling. Discussion of energy model for low cycle fatigue life prediction[J]. 金属学报, 2006, 42(2): 195-200 .
[8] YU Huichen; SUN Yanguo; XIE Shishu; K. TANAKA. Low Cycle Fatigue Crack Propagation in Stainless Steel Under Combined Torsion and Tension[J]. 金属学报, 2005, 41(1): 73-.
[9] JIANG Wenhui; YAO Xiangdong; GUAN Hengrong; HU Zhuangqi ( Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Shenyang Polytechnic University; Shenyang 110023). HIGH TEMPERATUER LOW CYCLE FATIGUE OF DZ40M COBALT-BASE SUPERALLOY[J]. 金属学报, 1998, 34(4): 378-383.
[10] WU Ximao;Al Suhua;ZHANG Yun;WANG Zhonmang;HAN Xinglin (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015) (Shenyang Polytechnic University. Shenyang 110023). THE LOW CYCLE FATIGUE BEHAVIOUR FOR 8090 Al-Li ALLOYS[J]. 金属学报, 1997, 33(7): 702-708.
[11] WANG Jianqiu; LI Jin; KE Wei(State Key Laboratory of Corrosion and Protection;Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences;Shenyang 110015)(Manuscript received 1995-12-22). EFFECT OF POLARIZATION ON DISLOCATION BEHAVIOURS OF A537 STEEL DURING LOW CYCLE CORROSION FATIGUE[J]. 金属学报, 1996, 32(7): 730-734.
[12] WANG Jianqiu; LI Jin; KE Wei(State Key Laboratory of Corrosion and Protection; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015). CRACK INITIATION OF A537 STEEL IN 3.5%NaCl SOLUTION DURING LOW CYCLE FATIGUE[J]. 金属学报, 1996, 32(6): 611-616.
[13] CHEN Wenzhe;QIAN Kuangwu Fuzhou UniversityPENG Kaiping;assistant;Department of Mechanical Engineering;Fuzhou University Fuzhou 350002. EFFECT OF DYNAMIC STRAIN AGING ON LOW CYCLE FATIGUE BEHAVIOUR OF 18--8 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 1993, 29(6): 43-48.
[14] NHAO Tingshi Huazhong University of Science and Technology; Wuhan. LOW CYCLE FATIGUE LIFE AND PLASTIC STRAIN ENERGY[J]. 金属学报, 1993, 29(2): 45-48.
[15] ZHOU Yigang; YU Hanqing; ZENG Weidong (Northwestern Polytechnical University; Xi'an)TANG Jialing (Chinese Aviation South Power Machine Company; Zhuzhou). EFFECT OF β-FLECK ON MECHANICAL PROPERTIES OF Ti-10V-2Fe-3Al ALLOY[J]. 金属学报, 1992, 28(12): 23-28.
No Suggested Reading articles found!