Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (3): 307-311     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of ph values on as-extruded magnesium alloy AM60
ZENG Rongchang; ZHOU Wanqiu; HAN Enhou; KE Wei
State Key Laboratory for Corrosion and Protection; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

ZENG Rongchang; ZHOU Wanqiu; HAN Enhou; KE Wei. Effect of ph values on as-extruded magnesium alloy AM60. Acta Metall Sin, 2005, 41(3): 307-311 .

Download:  PDF(327KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion morphologies of as-extruded magnesium alloy AM60 in 3.5%NaCl aqueous solutions with pH 3,7 and 12 were observed, and the number and size of corrosion pits were measured. The effect of pH values on corrosion of AM60 and the role of AlMn particles in corrosion were discussed. A corrosion model of AM60 was put forward. The experimental results indicate that the pitting corrosion occurred in an acidic or neutral 3.5%NaCl aqueous solution, the pits initiated in the α matrix around AlMn particles, whereas Al element was dissolved in the rich-Al areas such as AlMn particles and β phase, and the honeycomb morphology was formed on the surface in alkaline solutions. The number of corrosion pits is most at pH 7.
Key words:  magnesium alloy AM60      pH value      corrosion      
Received:  07 April 2004     
ZTFLH:  TG174  
  TG146  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I3/307

[1] Emley E F. Principles of Magnesium Technology. Oxford: Pergamon Press, 1966: 687
[2] Froats A, Aune T K, Hawke D, Unsworth W, Hillis J. In: Metals Handbook, Vol.13, 9ed., Metals Park, Ohio: ASM, 1987: 740
[3] Maker G L, Kruger J. Int Mater Rev, 1993; 38: 138
[4] Song G, Atrens A. Adv Eng Mater, 1999; 1(1): 11
[5] Ghali E. Mater Sci Forum, 2000; 350-351: 261
[6] Song G, Atrens A, Dargusch M. Corros Sci, 1999; 41: 249
[7] Ambat R, Aung N N, Zhou W. Corros Sci, 2000; 42: 1433
[8] Lunder O, Lein J E, Hesjevik S M. Corrosion, 1989; 45: 741
[9] Beldjoudi T, Fiaud C, Robbiola L. Corrosion. 1993; 49: 733
[10] Wei L Y, Westengen H, Aune T K, Albright D. In: Kaplan H I, Hryn J N, Clow B B, eds., Magnesium Technology 2000, Warrendale, Pa: TMS, 2000: 153
[11] Tunold R, Holtan H, Berfe M B H, Lasson A, Hassen R S. Corros Sci, 1977; 17: 353
[12] Ambat R, Aung N N, Zhou W. J Appl Electrochem, 2000; 30: 865
[13] Song G, Atrens A, John ST D, Wu X, Nairn J. Corros Sci, 1997; 39: 1981
[14] Song G, Atrens A, Wu X , Zhang B. Corros Sci, 1998; 40: 1769
[15] Zeng R C. Ph Dissertation, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang, 20030
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[3] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[4] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[7] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[11] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[12] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[13] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!