Effect of Ni-Al coating on high temperature oxidation behaviors of Ti-22Al-26Nb alloy
GUO Minghu; WANG Qimin; KE Peiling; CUI Yuyou; GONG Jun; SUN Chao; WEN Lishi
State Key Laboratory for Corrosion and Protection; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article:
GUO Minghu; WANG Qimin; KE Peiling; CUI Yuyou; GONG Jun; SUN Chao; WEN Lishi. Effect of Ni-Al coating on high temperature oxidation behaviors of Ti-22Al-26Nb alloy. Acta Metall Sin, 2005, 41(3): 312-316 .
Abstract Ni-68.5Al (atomic fraction, %) coatings were prepared on an orthorhombic
alloy Ti-22Al-26Nb (atomic fraction, %) by detonation gun
spraying (DS). After annealing, the Ni-Al coatings have a good
adherence with the substrate, and XRD shows that the
coatings mainly composed of $\beta$-NiAl. The influence of
Ni-Al coatings on the isothermal
oxidation behaviors of Ti-22Al-26Nb was
studied in static air at 800 ℃. For the alloy
Ti-22Al-26Nb without coating, under high temperature
oxidation a mixed oxide scale formed
and consisted of TiO2, AlNbO4 and
Al2O3, in which TiO2 is the dominant oxide phase and
exhibits relatively poor oxidation resistance. The high
temperature oxidation resistance of
the specimens coated with Ni-Al
coatings is remarkably improved due to the formation of a
dense and adherent Al2O3scale.
[1] Leyens C. Oxid Met, 1999; 52: 475 [2] Rowe R G. Microstructure/Property Relationships in Titanium Aluminides and Their Alloys. Warrendale, PA: TMS, 1997: 387 [3] Leyens C, Gedanitz H. Scr Mater, 1999; 41: 901 [4] Lu B, Yang R, Cui Y Y, Wang F H, Shao G S, Tsakiropou-los P. Acta Metall Sin, 2002; 38: 55 (卢斌,杨锐,崔玉友,王福会,邵国胜,Tsakiropoulos P.金属学报,2002;38:55) [5] Lu B, Yang R, Cui Y Y, Li D. Metall Mater Trans, 1998; 29A: 1279 [6] Warrier S G, Krishnamurthy S, Smith P R. Metall Mater Trans, 2000; 31A: 2205 [7] Mendez H P, Clemens H, Knabl W. Gamma Titanium Aluminides 1999, Warrendale, PA: TMS, 1999: 187 [8] Tang Z, Wang F, Wu W. Intermetallics, 1999; 7: 1271 [9] Gil A, Niewolak L, Shemet V, Singheiser L, Quadakkers W J. Report Forschungtzentrum Julich, No.3847, Julich, German, 2001 [10] Grabke H J. Intermetetallics, 1999; 7: 1153 [11] Haynes J A. Scr Mater, 2001; 44: 1147 [12] Pint B A. Oxid Met, 1998; 49: 531 [13] Zhang, Y, Haynes J A, Pint B A, Wright I G, Lee W Y. Surf Coat Technol, 2003; 163: 19 [14] Parker D W. Adv Mater Proc, 1991; 139: 68 [15] Kharlamov Y A. Thin Solid Films, 1978; 54: 271 [16] Lou H Y, Wang F H. Vaccum, 1992; 43: 757 [17] Wang Q M, Guo M H, Ke P L, Sun C, Huang R F, Wen L S. Acta Metall Sin, 2004; 40: 1265 (王启民,郭明虎,柯培玲,孙超,黄荣芳,闻立时.金属学 报,2004;40:1265) [18] Massalskl B. Binary Alloy Phase Diagrams. Vol.1, 2nd ed., Materials Park, OH: ASM International, 1990: 184 [19] Kharlamov Y A. Mater Sci Eng, 1987; 93: 1 [20] Lang E. Coatings for High Temperature Applications. New York: Applied Science Publishers, 1983: 1 [21] Leyens C. Oxid Met, 1999; 52: 475 [22] Doychak J, Ruhle M. Oxid Met, 1989; 31: 431 [23] Brumm M W, Grabke H J. Corros Sci, 1992; 33: 1677 [24] Rybicki G C, Smialek J L. Oxid Met, 1989; 31: 275 [25] Pint B A, Martin J R, Hobbs L W. Solid State Ionics, 1995; 78: 99
JIANG Wenhui; YAO Xiangdong; GUAN Hengrong; HU Zhuangqi ( Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Shenyang Polytechnic University; Shenyang 110023). HIGH TEMPERATUER LOW CYCLE FATIGUE OF DZ40M COBALT-BASE SUPERALLOY[J]. 金属学报, 1998, 34(4): 378-383.