Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (11): 1183-1189     DOI:
Research Articles Current Issue | Archive | Adv Search |
High strength nano-structured Ti-Nb-Zr-Sn alloy
HAO Yulin; YANG Rui
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences
Cite this article: 

HAO Yulin; YANG Rui. High strength nano-structured Ti-Nb-Zr-Sn alloy. Acta Metall Sin, 2005, 41(11): 1183-1189 .

Download:  PDF(644KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  To obtain fully dense nano-structured metallic materials, severe plastic deformation technique usually has to be used because normal deformation mechanisms, such as dislocation interaction, deformation twins and/or martensitic transformation, are ineffective in grain refinement. Recently we found localized unstable plastic deformation in a $\beta$ type Ti-Nb-Zr-Sn titanium alloy that is very effective in grain refinement.By taking advantage of this deformation mechanism, grain size less than 50 nm can be easily achieved in conventionally cold-rolled sheet with thickness of 1.5 mm. In this paper we examine the conditions under which such an unusual deformation mechanism can be realised and report further strengthening of the nano-structured alloy by aging treatment. The origin of this deformation mechanism will be discussed.
Key words:  titanium alloy      nanostructure      nonuniform deformation      unstable shear      
Received:  30 June 2005     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I11/1183

[1] Gleiter H. Prog Mater Sci, 1989; 33: 223
[2] Valiev R Z. Nature Mater, 2004; 3: 511
[3] Valiev R Z. Acta Mater, 1994; 42: 2467
[4] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 102
[5] Sergueeva A V, Song C, Valiev R Z, Mukherjee A K. Mater Sci Eng, 2003; A339: 159
[6] Stolyarov V V, Zhu Y T, Alexandrov I V, Lowe T C, Valiev R Z. Mater Sci Eng, 2003; A343: 43
[7] Hao Y L, Li S J, Sun S Y, Zheng C Y, Hu Q M, Yang R. Appl Phya Lett, 2005; 87: 091906
[8] Jamieson J C. Science, 1963; 140: 72
[9] Vohra Y K, Spencer P T. Phys Rev Lett, 2001; 86: 3068
[10] Akahama Y, Kawamura H, Bihan T L. Phys Rev Lett, 2001; 87: 275503
[11] Sikka S K, Vohra Y K, Chidambaram R. Prog Mater Sci, 1982; 27: 245
[12] Bagariatskii Yu A, Nosova G I, Tkgunova T V. Dok Akad Nauk SSSR, 1958; 122: 593
[13] Luke C A, Taggart R, Polonis D H. Trans ASM, 1964; 57: 142
[14] Fisher E S, Dever D. Acta Metall, 1970; 18: 265
[15] Collings E W, Ho J C. Phya Rev, 1972; 5: 4435
[16] Collings E W, Gegel H L. Scr Metall, 1973; 7: 437
[17] Collings E W. Physical Metallurgy of Titanium Alloys. ASM, Metals Park, OH, 1984: 78
[18] Barsoum M W, Farber L, El-Raghy T. Metall Mater Trans, 1999; 30A: 1727
[19] Barsoum M W, Zhen T, Kalidindi S R, Radovic M, Mu- rugaiah A. Nature Mater, 2003; 2: 107
[20] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[21] Wolf D, Yamakov V, Phillpot S R, Mukherjee A, Gleiter H. Acta Mater, 2005; 53: 1
[22] Hasnaoui A, van Swygenhoven H, Derlet P M. Science, 2003; 300: 1550
[23] Jia D, Ramesh K T, Ma E. Acta Mater, 2003; 51: 3495
[24] Wei Q, Kecskes L, Jiao T, Hartwig K T, Ramesh K T, Ma E. Acta Mater, 2004; 52: 1859
[25] Hart E W. Acta Metall, 1967; 15: 351
[26] Kumar K S, Van Swygenhoven H, Suresh S. Acta Mater, 2003; 51: 5743
[27] Morris Jr J W, Clatterbuck D M, Chrzan D C, Krenn C R, Luo W, Cohen M L. Mater Sci Forum, 2003; 426-432: 4429
[28] Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T. Science, 2003; 300: 464
[29] Zhu Y T, Huang J Y, Gubicza J, Ungar T, Wang Y M, Ma E, Valiev R Z. J Mater Res, 2003; 18: 1908
[30] Valiev R Z, Sergueeva A V, Mukherjee A K. Scr Mater, 2003; 49: 669
[31] Lu K, Lu J. Mater Sci Eng, 2004; A375-377: 38
[32] Liao X Z, Zhao Y H, Zhu Y T, Valiev R Z, Gunderov D V. J Appl Phys, 2004; 96: 636
[33] Suzuki T, Wuttig M. Acta Metall, 1975; 23: 1069
[34] Williams J C. In: Jaffee R I, Burte H M eds., Titanium Science and Technology (Proc. 2nd Int. Conf. on Titanium), New York: Plenum, 1973: 1433
[35] Ahluwalia R, Lookman T, Saxena A. Phys Rev Lett, 2003; 91: 055501
[36] Tolbert S H, Alivisatos A P. Science, 1994; 265: 373
[37] Perez-Prado M T, Hines J A, Vecchio K S. Acta Mater, 2001; 49: 2905
[38] Bailey J E, Hirsch P B. Proc R Soc London, 1962; 267A: 11
[39] Li J C M. J Appl Phys, 1962; 33: 2958
[40] Guduru P R, Ravichandran G, Rosakis A J. Phys Rev, 2001; 64E: 036128
[41] Williams J C, Baggerly R G, Paton N E. Metall Trans, 2002; 33A: 837
[42] Damiano U U. Trans TMS-AIME, 1969; 245: 637
[43] Srinivasan S G, Hatch D M, Stokes H T, Saxena A, Albers R C, Lookman T. arXiv:cond-mat/0209530 vl, 23 Sep., 2002
[44] Orowan E. Nature, 1942; 149: 463
[45] Roundy D, Krenn C R, Cohen M L, Morris Jr J W. Philos Mag, 2001; 81A: 1725
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[3] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[4] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[7] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[8] HANG Tao, XUE Qi, LI Ming. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. 金属学报, 2022, 58(4): 486-502.
[9] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[10] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[11] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[12] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[13] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[14] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
No Suggested Reading articles found!