Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (7): 736-740     DOI:
Research Articles Current Issue | Archive | Adv Search |
MOLECULAR DYNAMIC SIMULATION OF MELTING AND SOLIDIFICATION IN BINARY LIQUID METAL: Cu--Ag
QI Li; ZHANG Haifeng; HU Zhuangqi
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

QI Li; ZHANG Haifeng; HU Zhuangqi. MOLECULAR DYNAMIC SIMULATION OF MELTING AND SOLIDIFICATION IN BINARY LIQUID METAL: Cu--Ag. Acta Metall Sin, 2004, 40(7): 736-740 .

Download:  PDF(351KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the embedded--atom method, a constant--pressure, constant--temperature (NPT) molecular dynamics (MD) technique is applied to obtain an atomic description of glass formation process in eutectic Cu40Ag60 alloy. By using radial distribution function (RDF) and pair analysis (PA) methods, the structure and glass forming ability of this alloy is studied by quenching from the liquid at different cooling rates. It is observed that the retention of amorphous structure requires extremely high cooling rates. Structure analyses of the alloys in the simulations reveal the evolvement of the different clusters at various quenching rates.
Key words:  Cu40Ag60 alloy      embedded-atom method      molecular dynamics      
Received:  01 July 2003     
ZTFLH:  TG139.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I7/736

[1] Daw M S, Baskes M I. Phys Rev Lett, 1983; 50: 1285
[2] Daw M S, Baskes M I. Phys Rev B, 1984; 29: 6443
[3] Finnis M W, Sinclair J E. Phil Mag A, 1984; 50: 45
[4] Rosato V, Guillope M, Legrand B. Phil Mag A, 1989; 59:321
[5] Johnson R A. Phys Rev B, 1988; 37: 3924
[6] Johnson R A. Phys Rev B, 1988; 37: 6121
[7] Johnson R A. Phys Rev B, 1989; 39: 12 554
[8] Johnson R A. Phys Rev B, 1990; 41: 717
[9] Foiles S M. Phys Rev B, 1985; 32: 3409
[10] Oh D J, Johnson R A. J Mater Res, 1988; 3: 471
[11] Oh D J, Johnson R A. In: Vitek V, Srolovitz D J eds., Atomistic Simulation of Materials, Plenum Publishing Corporation, 1989: 233
[12] Oh D J, Johnson R A. J Nucl Mater, 1989; 169: 5
[13] Admas J B, Foiles S M. Phys Rev B, 1990; 41: 3316
[14] Johnson R A. Phil Mag A, 1991; 63: 865
[15] Yang Z, Johnson R A. Mater Sci Eng, 1993; 1: 707
[16] Goldstein A S, Jonsson H. Phil Mag B, 1995; 71: 1041
[17] Bhuiyan G M, Silbert M, Scott M J. Phys Rev B, 1996;53: 636
[18] Baskes M I. Phys Rev Lett, 1987; 59: 2666
[19] Carlsson A E, Fedders P A, Myles C W. Phys Rev B,1990; 41: 1247
[20] Rubini S, Ballone P. Phys Rev B, 1994; 50: 9648
[21] Ballone P, Rubini S. Phys Rev B, 1995; 51: 14962
[22] Qi Y, Cagin T, William A. Phys Rev B, 1999; 59: 3527
[23] Sheng H W, He J H, Ma E. Phys Rev B, 2002; 65: 184203
[24] Mei J, Davenport J W, Fernando G W. Phys Rev B, 1991;43: 4653
[25] Verlet L. Phys Rev, 1967;159: 98
[26] Honeycutt J D, Anderson H C. J Chem Phys, 1987; 89:4309
[27] Ercolessi F A. Molecular Dynamics Primer, 1997; 25
[28] Wendt H R, Abraham F F. Phys Rev Lett, 1978; 41: 1244
[1] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[2] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[3] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[6] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[7] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[8] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[9] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[10] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[11] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[12] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[13] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[14] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[15] Jin WANG, Liming YU, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe[J]. 金属学报, 2018, 54(1): 47-54.
No Suggested Reading articles found!