Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (6): 599-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Modelling Dislocation Patterns by Cellular Automaton and Molecular Dynamics
ZHANG Lin; ZHANG Caibei; WANG Yuanming; WANG Shaoqing
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

ZHANG Lin; ZHANG Caibei; WANG Yuanming; WANG Shaoqing. Modelling Dislocation Patterns by Cellular Automaton and Molecular Dynamics. Acta Metall Sin, 2004, 40(6): 599-.

Download:  PDF(7307KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A model to describe dislocation patterns based on cellular automaton and molecular dynamics is presented, which takes into account the short—range interaction and long--range interaction between edge dislocations with opposite Burger's vectors on the same glide plane or the different glide planes. This model uses molecular dynamics to deal with long--range interaction, and cellular automaton to describe the short--range interaction. Using the model, the dislocation structures of single crystal Cu are simulated under no external stress and applied cyclic stress.
Key words:  cellular automaton      molecular dynamics      dislocation pattern      
Received:  17 June 2003     
ZTFLH:  TB115  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I6/599

[1] Kuhlmann-Wilsdorf D, van der Merve J H. Mater Sci Eng, 1982; 55; 79
[2] Bassim M N, Jesser W A, Kuhlmann-Wilsdorf D, Wilsdorf H G F. Mater Sci Eng, 1986; 81; 122
[3] Holt D L. J Appl Phys, 1970; 41; 3179
[4] Hahner P. Acta Mater, 1996; 44; 2345
[5] Walgraef D, Aifantis E C. J Appl Phys, 1985; 15; 688
[6] Groma I, Balogh P. Acta Mater, 1999; 47; 3647
[7] Zhang L, Wang Y M, Zhang C B. Acta Metall Sin, 2001;37; 882(张林,王元明,张彩碚.金属学报, 2001; 37; 882)
[8] Zhang L, Zhang C B, Liu X H, Wang G D, Wang Y M. J Mater Sci Technol, 2002; 18; 163
[9] Zhang L, Zhang C B, Wang Y M, Liu X H, Wang G D. J Mater Res, 2002; 17; 2251
[10] Zhang L, Wang Y M, Zhang C B, Wang S Q, Ye H Q.Modelling Simul Mater Sci Technol, 2003; 11; 791
[11] Zhang L, Zhang C B, Wang Y M, Wang S Q, Ye H Q.Acta Mater, 2003; 51; 5519
[12] Lepinoux J. Solid State Phenom, 1988; 3; 335
[13] Kubin L P, Canova G, Condat M, Devincre B, Pontikis V, Brechet Y. Solid State Phenom, 1992; 23-24; 455
[14] Fournet R, Salazar J M. Phys Rev B, 1996; 53; 6283
[15] Salazar J M, Fournet R, Banai N. Acta Mater, 1995; 43;1127d
[1] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[2] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[3] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[6] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[7] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[8] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[9] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[10] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[11] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[12] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[13] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[14] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[15] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
No Suggested Reading articles found!