Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (6): 594-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Measurement of the Fracture Toughness and Critical Stress for Cracking in SnO2 Nanobelts Using Nanoindentation
WANG Yugui; QIAO Lijie; GAO Kewei; SU Yanjing; CHU Wuyang; WANG Zhonglin
Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

WANG Yugui; QIAO Lijie; GAO Kewei; SU Yanjing; CHU Wuyang; WANG Zhonglin. Measurement of the Fracture Toughness and Critical Stress for Cracking in SnO2 Nanobelts Using Nanoindentation. Acta Metall Sin, 2004, 40(6): 594-.

Download:  PDF(19027KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The hardness, fracture toughness and the critical stress for crack initiation of single crystalline nanobelts have been measured using nanoindentation method. The result showed that a sudden depth excursion occurred in the load--depth curves which corresponds to initiation of an indentation crack. The critical stress for the crack initiation. which is one order of magnitude less than that of the other bulk brittle materials. The average values of the hardness and modulus are H=6.25 GPa and E=86.7 GPa, respectively.
Key words:  nanoindentation      hardness      fracture toughness      
Received:  10 June 2003     
ZTFLH:  TG113.22  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I6/594

[1] Pan Z W, Dai Z R, Wang Z L. Science, 2001; 291: 1947
[2] Dai Z R, Pan Z W, Wang Z L. Solid State Commu, 2001;118: 351
[3] Watson J. Sensors Actuators, 1984; 5: 29
[4] Tatsuyama C, Ichimura S. Jpn J App Phys, 1976; 15: 843
[5] Pharr G M. Mater Sci Eng, 1998; A253: 151
[6] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564
[7] Bahr D F, Kramer D E, Gerberich W W. Acta Mater,1998; 46: 3605
[8] Pethica J B, Hutchings R, Oliver W C. Philos Mag, 1983;A48: 593
[9] Doerner M F, Gardner D S, Nix W D. J Mater Res, 1986;1: 845
[10] Pang M, Eakins D E, Norton M G, Bahr D F. Corrosion,2001; 57: 523
[1] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[2] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[4] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[5] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[6] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[7] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[8] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[9] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[10] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[11] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[12] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[13] TONG Wenhui, ZHANG Xinyuan, LI Weixuan, LIU Yukun, LI Yan, GUO Xuming. Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. 金属学报, 2020, 56(9): 1265-1274.
[14] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[15] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
No Suggested Reading articles found!