Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (5): 462-466     DOI:
Research Articles Current Issue | Archive | Adv Search |
Dislocation Pattern in Deformation Band and Crack Nucleation in a Fatigued Copper Bicrystal with Perpendicular Grain Boundary
LI Yong; LI Shouxin; LI Guangyi
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

LI Yong; LI Shouxin; LI Guangyi. Dislocation Pattern in Deformation Band and Crack Nucleation in a Fatigued Copper Bicrystal with Perpendicular Grain Boundary. Acta Metall Sin, 2004, 40(5): 462-466 .

Download:  PDF(8518KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The dislocation pattern evolution and crack nucleation in a fatigued copper bicrystal with perpendicular grain boundary (GB) have been investigated by electron channelling contrast (ECC) technique in SEM. The observation results show that in the process from the formation of deformation band (DB) to the appearance of fatigued crack, the spacing between the wall structures in DB keeps constant. The dislocation pattern around the crack tips of transgranular and granular presents misorientation cell structure. The crack preferentially form in DB.
Key words:  copper bicrystal      dislocation pattern      crack      
Received:  18 April 2003     
ZTFLH:  TG111.7  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I5/462

[1] Essmann U, Gosele U, Mughrabi H. Philos Mag, 1981; 44A: 405
[2] Basinski Z S, Basinski J S. Acta Metall, 1985; 33:1319
[3] Ma B T, Laird C. Acta Metall, 1989; 37:325
[4] King A E, Teer D G. Philos Mag, 1967; 15:425
[5] Chin G Y, Backofen W A. J Inst Met, 1961-62; 90:13
[6] Saletore M, Taggart R. Mater Sci Eng, 1978; 36:259
[7] Li S X, Li Y, Li G Y, Wang Z G, Lu K. Philos Mag, 2002; 82A: 867
[8] Li S X, Li X W, Zhang Z F, Wang Z G. Philos Mag, 2002; 82A: 3129
[9] Li Y, Li S X, Li G Y, Lu K. Z Metallkd, in press
[10] Bayerlein M, Mughrabi H. Acta Metall Mater, 1991; 39: 1645
[11] Polak J, Obrtllik K, Lisskutin P. In: Lukas P, Polak J, eds., Basic Mechanisms in Fatigue of Metals, Amsterdam: Academia and Elsevier, 1988:101
[12] Kim W H, Laird C. Acta Metall, 1978; 26:777
[13] Kim W H, Laird C. Acta Metall, 1978: 26:789
[14] Lim L C, Tay Y K, Fong H S. Acta Metall Mater, 1990; 38:595
[15] Ahmed J, Wilkinson A J, Roberts S G. Philos Mag, 2001; 81A: 1473
[16] Hunsche A, Neumann P. Acta Metall, 1986; 34:207
[17] Katagiri K. Omura A, Koyanagi K, Awatani J, Shiraishi T. Kaneshiro H, Metall Trans, 1977; 8A: 1769
[18] Brown L M. Met Sci, 1977; 11:315
[19] Lin M R, Fine M E, Mura T. Acta Metall, 1986; 34: 619
[20] Zhai T, Martin J W, Briggs G A D, Wilkinson A J. Acta Mater, 1996; 44:3477
[21] Li X W, Wang Z G, Li S X. Philos Mag, 2000; 80A: 1901
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[5] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[6] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[7] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[10] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[13] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[14] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[15] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
No Suggested Reading articles found!