Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (5): 449-451     DOI:
Research Articles Current Issue | Archive | Adv Search |
Molecular Dynamics Simulation of Healing of an Ellipsoid Crack in Copper Crystal Under Compressive Stress
LI Ming; CHU Wuyang; GAO Kewei; SU Yanjing; QIAO Lijie
Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

LI Ming; CHU Wuyang; GAO Kewei; SU Yanjing; QIAO Lijie. Molecular Dynamics Simulation of Healing of an Ellipsoid Crack in Copper Crystal Under Compressive Stress. Acta Metall Sin, 2004, 40(5): 449-451 .

Download:  PDF(7915KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The molecular dynamics method is used to simulate healing of an ellipsoid crack inside single crystal copper under compressive stress with EAM potential. The result shows that dislocations are emitted firstly from the ellipsoid crack and move along the (1-11) and (-111) planes under a constant compressive stress of 342 MPa. The ellipsoid crack becomes smaller and smaller until it is healed through dislocation emission, motion, and annihilation on the surfaces. After crack healing, there are a residual dislocation net and some vacancy sites. It seems that the cavity inside the ellipsoid crack is transferred to the surfaces through dislocation emission, motion, and annihilation. In the same time, the crystal undergoes large plastic deformation and the surfaces become rough because of dislocation annihilation.
Key words:  ellipsoid      crack healing      copper      
Received:  13 May 2003     
ZTFLH:  TG146.11  
  TG111.91  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I5/449

[1] Gao K W, Qiao L J, Chu W Y. Scr Mater, 2001; 44:1055
[2] Li X G, Dong C F, Chen H, Chu W Y. Acta Metall Sin, 2001: 37:1093(李晓刚,董超芳,陈华,褚武扬.金属学报,2001;37:1093)
[3] Vaidya R V, Zurek A K, Wolfenden A. J Mater Eng Perform, 1997; 6:46
[4] Han J T, Zhao G, Gao Q X. Sci Chin, 1997; 27:23
[5] Zhou Y Z, Xiao S H, Gan Y, Gao M, He G H, Zhou B L. Acta Metall Sin, 2000; 36:43(周亦胄,肖素红,甘阳,高明,何冠虎,周本濂.金属学报,2000;36:43)
[6] Fock J, Akdut N, Gottstein G. Scr Metall Mater, 1992; 27:1033
[7] Li Z, Gao K W, Qiao L J, Zhou F X, Chu W Y. Comput Mater Sci, 2001; 20:143
[8] Zhou G W, Gao K W, Qiao L J, Wang Y B, Chu W Y. Modell Simul Mater Sci Eng, 2000; 8:63
[9] Finnis M W, Sinclair J E. Philos Mag, 1984; 50A: 45
[10] Ackland G J, Tichy G, Vitek V, Finnis M W. Philos Mag, 1987; 56A: 735
[1] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[2] ZHAO Naiqin, GUO Siyuan, ZHANG Xiang, HE Chunnian, SHI Chunsheng. Progress on Graphene/Copper Composites Focusing on Reinforcement Configuration Design: A Review[J]. 金属学报, 2021, 57(9): 1087-1106.
[3] PENG Wuqingliang, LI Qiang, CHANG Yongqin, WANG Wanjing, CHEN Zhen, XIE Chunyi, WANG Jichao, GENG Xiang, HUANG Lingming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor[J]. 金属学报, 2021, 57(7): 831-844.
[4] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[5] Jianqiang REN, Shuhua LIANG, Yihui JIANG, Xiang DU. Research on the Microstructure and Properties of In Situ (TiB2-TiB)/Cu Composites[J]. 金属学报, 2019, 55(1): 126-132.
[6] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[7] Tingting ZHAO, Zhixin KANG, Xiayu MA. Fabricating Superhydrophobic Copper Meshes by One-Step Electrodeposition Method and Its Anti-Corrosion and Oil-Water Separation Abilities[J]. 金属学报, 2018, 54(1): 109-117.
[8] Tingbiao GUO, Qi LI, Chen WANG, Feng ZHANG, Zhi JIA. Deformation Characteristics and Mechanical Properties of Single Crystal Copper During Equal Channel Angular Pressing by Route A[J]. 金属学报, 2017, 53(8): 991-1000.
[9] Wei FU,Xiaoguo SONG,Long LONG,Jianhang CHAI,Jicai FENG,Guodong WANG. INTERFACIAL MICROSTRUCTURE AND MECHANI-CAL PROPERTIES OF INDIRECT BRAZED GRAPHITE/COPPER JOINT[J]. 金属学报, 2016, 52(6): 734-740.
[10] Zhisheng WANG, Xiang CHEN, Yanxiang LI, Huawei ZHANG, Yuan LIU. EFFECTS OF B ON HIGH TEMPERATURE MECHA-NICAL PROPERTIES AND THERMAL FATIGUE BEHAVIOR OF COPPER DIE-CASTING DIE STEEL[J]. 金属学报, 2015, 51(5): 519-526.
[11] ZHUO Weijia, LIU Yuan, LI Yanxiang. EFFECT OF WITHDRAWING RATE ON PORE MORPHOLOGY OF LOTUS-TYPE POROUS COPPER PRODUCED BY SINGLE-MOLD GASAR TECHNIQUE[J]. 金属学报, 2014, 50(8): 921-929.
[12] JIANG Yanbin, LIU Xinhua, WANG Chunyang, MO Yongda, XIE Jianxin. INFLUENCE OF INDUCTION HEATING CONTINUOUS ANNEALING ON RECRYSTALLIZATION AND INTER- FACIAL INTERMETALLIC COMPOUND OF COPPER-CLAD ALUMINUM WIRE[J]. 金属学报, 2014, 50(4): 479-488.
[13] WANG Changgang, DONG Junhua, KE Wei, LI Xiaofang. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF COPPER IN THE MIXED SOLUTION OF HCO3-, SO42- AND Cl-[J]. 金属学报, 2013, 49(2): 207-213.
[14] SUN Feilong, LI Xiaogang, LU Lin, WAN Hongxia, DU Cuiwei, LIU Zhiyong. CORROSION BEHAVIOR OF COPPER ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA[J]. 金属学报, 2013, 49(10): 1211-1218.
[15] XIANG Hongliang FAN Jinchun LIU Dong GU Xing. EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
II. Corrosion Resistance and Antibacterial Properties
[J]. 金属学报, 2012, 48(9): 1089-1096.
No Suggested Reading articles found!