Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1211-1218    DOI: 10.3724/SP.J.1037.2013.00142
Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF COPPER ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA
SUN Feilong, LI Xiaogang, LU Lin, WAN Hongxia, DU Cuiwei, LIU Zhiyong
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

SUN Feilong, LI Xiaogang, LU Lin, WAN Hongxia, DU Cuiwei, LIU Zhiyong. CORROSION BEHAVIOR OF COPPER ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA. Acta Metall Sin, 2013, 49(10): 1211-1218.

Download:  PDF(4256KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion in deep ocean environment has been paied more and more attentions to the exploitation of marine resources. Different from shallow marine environments, deep ocean environments are specially characterized by high hydrostatic pressure, low temperature, variable dissolved oxygen content and pH value in deep ocean, etc.. So the corrosion behaviour of materials, such as ferrous and nonferrous metal and coatings, in deep ocean environments is different from that in shallow marine environments. A number of researches have been carried out to investigate the corrosion behaviour of metals in natural deep ocean in a few developed countries. Such researches, however, began until 2008 in South China Sea. In this work, the corrosion behavior of H62 brass, QAl9-2 and QSn6.5-0.1 bronze in 800 and 1200 m deep ocean environments of South China Sea was studied using field tests. The results indicated that the corrosion rates of copper alloys decreased in the following order: H62 (0.042 mm/a) > QSn6.5-0.1 (0.004-0.007 mm/a) > QAl9-2 (0.003 mm/a). The corrosion rate of H62 brass decreased linearly with the increase in depth. While the corrosion rates of QAl9-2 and QSn6.5-0.1 bronze decreased first and then increased with the increase in depth. The minimum value of corrosion rate occurred between 800-1200 m. The morphology and composition of corrosion products were investigated using SEM, EDS and XRD. The results demonstrated that the dezincification corrosion obeying solution-redeposition mechanism in H62 brass occurred. The corrosion products were composed of Cu, ZnO, Zn5(OH)8Cl2H2O and Cu(OH)2H2O. And the dealloying corrosion in QAl9-2 and QSn6.5-0.1 bronze occurred. The corrosion products of QAl9-2 bronze consist of Cu2O and CuCl2, and those of QSn6.5-0.1 bronze Cu2O, CuCl2 and Cu2Cl(OH)3.

Key words:  copper alloy      corrosion      deep ocean      field test     
Received:  28 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00142     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1211

[1] David A, Shi X. Corros Sci, 2005; 47: 2335
[2] Zhou J L, Li X G, Cheng X Q, Dong C F, Du C W, Lu L. Corros Sci Prot Technol, 2010; 22: 47
(周建龙, 李晓刚, 程学群, 董超芳, 杜翠薇, 卢琳. 材料腐蚀与防护技术, 2010; 22: 47)
[3] Schumacher M. Sea Water Corrosion Handbook. New Jersey: Park Ridge, 1979: 150
[4] Dexter S C. Handbook of Oceanographic Engineering Materials. New York: Whiley-Interscience, 1979: 23
[5] Dexter S C. Corrosion, 1980; 36: 423
[6] Sparks C P, Cabillic J P, Schawann J C. J Energy Resour-Trans ASME, 1983; 105: 282
[7] Laque F L. Marine Corrosion. London: John Wiley and Sons Inc., 1975: 40
[8] Chandler K A. Marine and Offshore Corrosion (Marine Engineering Series). London: Butter worth, 1985: 72
[9] Warren A B. J Mar Res, 1982; 40: 823
[10] Sawant S S, Venkat K, Wagh A B. Indian J Technol, 1993; 31: 862
[11] Venkatesan R, Venkataswamy M A, Bhaskaran T A, Dwarakadasa E S, Ravindran M.Br Corros J, 2002; 37: 257
[12] Venkatesan R, Dwarakadasa E S, Ravindran M. Corros Prev Control, 2004; 51: 98
[13] Heiser J, Soo P. Corrosion of Barrier Materials in Seawater Environments.New York: Long Island, 1995: 23
[14] Fischer K P, Espelid B, Schei B. Corrosion 2001. Houston: NACE, 2001: Paper No.01013
[15] Fischer K P. Corrosion 99. Houston: NACE, 1999: Paper No.361
[16] Chen S, Hatt W, Wolfson S. Corrosion, 2003; 59: 721
[17] Akio K. Corros Sci, 2005; 47: 2361
[18] Mohammed R, Timothy J D. Int J Fatigue, 2008; 30: 2220
[19] Blundy R F, Shreir L L. Corros Sci, 1977; 17: 509
[20] Venkatesan R. PhD Dissertation, Indian Institute of Science, Bangalore, 2000
[21] Beccaria A M, Fiordiponti P, Mattogno G. Corros Sci, 1989; 29: 403
[22] Beccaria A M, Poggi G, Arfelli M, Mattogno G. Corros Sci, 1993; 34: 989
[23] Beccaria A M, Poggi G, Gingaud D, Castello P. Br Corros J, 1994; 29: 65
[24] Beccaria A M, Poggi G. Br Corros J, 1985; 20: 183
[25] Zhu X L, Li L Y, Xu J. Chin J Nonferrous Met, 1998; 8 (suppl 1): 210
(朱小龙, 林乐耘, 徐杰. 中国有色金属学报, 1998; 8(增刊1): 210)
[26] Langenegger E E, Robinson F P A. Corrosion, 1969; 25: 137
[27] Namboodhirl T K G, Chaudhary R S, Prakash B, Agrawal M K. Corros Sci, 1982; 22: 1037
[28] Li Y, Zhu Y L. Corros Prot, 2006; 27: 222
(李勇, 朱应禄. 腐蚀与防护, 2006; 27: 222)
[29] Kear G, Barker B D, Stokes K R, Walsh F C. Electrochim Acta, 2007; 52: 2343
[30] Strandberg H, Johansson L G. J Electrochem Soc, 1998; 145: 1093
[31] Nunea L, Reguera E, Corvo F, Gonzalez E, Vazquez C. Corros Sci, 2005; 47: 461

[1] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[4] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[5] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[6] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[7] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[8] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[11] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[12] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[13] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
No Suggested Reading articles found!