Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (2): 125-129     DOI:
Research Articles Current Issue | Archive | Adv Search |
A New Aging Precipitated Phase in NiTi Alloy
XU Aiqun
Analysis and Testing Center; Southeast University; Nanjing 210096
Cite this article: 

XU Aiqun. A New Aging Precipitated Phase in NiTi Alloy. Acta Metall Sin, 2004, 40(2): 125-129 .

Download:  PDF(5492KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The phase constitution of a highly dense NiTi alloy prepared by combustion synthesis and treated at high temperature solution and aging was analyzed by X--ray diffraction and transmission electron microscopy (TEM). Two kinds of fine precipitates exist in the alloy besides Ti2Ni. One is the rhombohedral structure Ti11Ni14 (Ti3Ni4}) with a=0.67 nm and alpha=113.85 circ,  which has an orientation relationship with the matrix (B2 structure, a=0.302 nm): <111$>Ti11Ni14∥<111>B2, {1-10>Ti11Ni14∥{123}B2. Another one is an unreported metastable precipitate with a long range ordered structure caused by Ni at the positions of Ti in NiTi phase. Its lattice parameter (a=0.873 nm) is about 3 times of that of NiTi matrix and the molecular formula is Ti13Ni14.
Key words:  NiTi      combustion synthesis      metastable precipitate≡      
Received:  16 April 2003     
ZTFLH:  TG139.6  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I2/125

[1] Yi H C, Moore J J. J Mater Sci, 1992; 27: 5067
[2] Funakubo K ed., translate by Qian D F. Shape Memory Alloy. Beijing: China Machine Press, 1984: 85(舟久保 熙康编,千冬范译.形状记忆合金.北京:机械工业出版社,1984:85)
[3] He Z R. Funct Mater, 1998; 29: 157(贺志荣.功能材料,1998;29:157)
[4] He Z R, Zhang Y H, Miyazaki S. Met Heat Treat, 1996; (10) : 7(贺志荣,张永宏,宫崎修一.金属热处理,1996;(10) :7)
[5] Nishida M, Wayman C M, Honma T. Metall Trans, 1986; 17A: 1505
[6] Hwang C M, Meichle M, Salamon M B, Wayman C M. Philos Mag, 1983; 47A: 31
[7] The Metallography and Heat Treatment Teaching and Research Group of Beijing Steel College. Metal Heat Treatment. Beijing: China Industry Press, 1961: 135(北京钢铁学院金相及热处理教研组.金属热处理.北京:中国工业出版社,1961:135)
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[3] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[4] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[8] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[9] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[10] GUO Yujing, BAO Haoming, FU Hao, ZHANG Hongwen, LI Wenhong, CAI Weiping. Ultrasonic Emulsification Preparation of Metallic Rubidium Sol and Its Ignition Performance[J]. 金属学报, 2022, 58(6): 792-798.
[11] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[12] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[13] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[14] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[15] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
No Suggested Reading articles found!