Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (10): 1027-1031     DOI:
Research Articles Current Issue | Archive | Adv Search |
Nucleation Model in Solidification Processes of the Alloys
CHEN Zhongwei; JIE Wanqi
State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072
Cite this article: 

CHEN Zhongwei; JIE Wanqi. Nucleation Model in Solidification Processes of the Alloys. Acta Metall Sin, 2004, 40(10): 1027-1031 .

Download:  PDF(63214KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  An experiential nucleation model in solidification processes of the industrial alloys was established by introducing the experimental parameters. This model not only described nucleation rate of the alloys quantitatively, but also linked the nucleation rates with the final grain sizes. The surface area of effective catalysts per unit volume melt and the contact angle of effective catalysts in the melt in solidification processes were calculated with the model and the nucleation characteristic of the casting was analyzed. The model was also used to estimate the nucleation parameters of Al-7Si alloy and Al-7Si-0.55Mg alloy in the definite melting condition.
Key words:  industrial alloy      nucleation model      solidification      
Received:  14 May 2004     
ZTFLH:  TG146  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I10/1027

[1] Turnbull D. J Appl Phys, 1950; 21: 1022
[2] Turnbull D. J Chem Phys, 1950; 18: 198
[3] Maxwell I, Hellawell A. Acta Metall, 1975; 23(2) : 229
[4] Wei B B, Yang G C, Zhou Y H. Ada Mater, 1991; 39:1249
[5] Turbull D, Cech R E. J Appl Phys, 1950; 21: 804
[6] Jian Z Y, Chang F E, Ma W H. Sci Chin, 2000; 43E(2) :113
[7] Thompson C V, Spaepen F. Ada Metall, 1983; 31: 2021
[8] Zhang X Z. Ada Mater, 1998; 46: 1135
[9] Uolland-Moritz D, Schroess J, Herlach D M. Ada Mater,1998; 46: 1601
[10] Rappaz M, Gandin C A. Ada Metall Mater, 1993; 41(2) : 345
[11] Thevoz Ph, Desbiolles J L, Rappaz M. Metall Mater TransA, 1989; 20A: 311
[12] Christian J W. The Theory of Transformation in Metalsand Alloys. Pergamon, Oxford, 1975: 418
[13] Turnbull D. In: Seitz F, Turbull D eds, Solid StatePhysics. New York: Academic Press, 1956: 225
[14] Spaepen F, Turnbull D. In: Grant N J, Giessen B C eds,Proc 2nd Int Conf On Rapidly Quenched Metals. Cambridge: MIT Press, 1976: 205
[15] Spaaepen F. Acta Metall, 1975; 23: 729
[16] Spaepen F, Meyer R B. Scr Metall, 1976; 10(1) : 37
[17] Turnbull D. Contemporary Phys, 1969; 10: 473
[18] Mueller B A, Perepezko J H. Metall Mater Trans A, 1987;18A: 1143
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[8] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[10] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[11] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[12] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[13] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[15] ZHANG Zhuang, LI Haiyang, ZHOU Lei, LIU Huasong, TANG Haiyan, ZHANG Jiaquan. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. 金属学报, 2021, 57(10): 1281-1290.
No Suggested Reading articles found!