Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (10): 1032-1036     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of Grain Size and Holding Load on Nanoindentation Creep of Cu Film
WANG Fei; XU Kewei
State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049
Cite this article: 

WANG Fei; XU Kewei. Effect of Grain Size and Holding Load on Nanoindentation Creep of Cu Film. Acta Metall Sin, 2004, 40(10): 1032-1036 .

Download:  PDF(69040KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of grain size and holding load on creep properties of polycrystalline Cu thin films were investigated using nanoindentation instrument. The results show that when grain size of polycrystalline Cu thin films is between 200 nm to 1500 nm, the stress exponent is insensitive to grain size. However, when the grain size is reduced below 200 nm, the stress exponents increases with decreasing grain size, implying that there is a critical grain size for stress exponents in nanoindentation tests. The stress exponent also increases with the increase of holding load. The above phenomena result from more grains to be involved and the creep rate decrease due to dislocation strengthening the plastic zone under the indenter tip.
Key words:  nanoindentation      creep      grain size      stress exponent      
Received:  14 November 2003     
ZTFLH:  TB383  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I10/1032

[1] Raman V, Berriche R. J Mater Res, 1992; 7: 627
[2] Chen J, Wang W, Lu L, Lu K. Acta Metall Sin, 2001; 11: 1179(陈吉,汪伟,卢磊,卢柯.金属学报,2001;11:1179)
[3] Feng G, Ngan A H W. Scr Mater, 2001; 45: 971
[4] Pollock H M, Maugis D, Barquins M. In: Blau P J, Lawn B R eds, Microindentation Techniques in Materials and Engineering, Philadelphia, PA: ASTM, 1986, 47
[5] Mayo M J, Siegel R W, Liao Y X, Nix W D. J Mater Res,1992; 7: 973
[6] Mayo M J, Siegel R W, Narayanasamy A, Nix W D. JMater Res, 1990; 5: 1073
[7] Barrett C R, Lytton J L, Sherby O D. Trans AIME, 1967;239: 170
[8] Parker E R. Trans ASM, 1958; 50: 52
[9] Feltham P, Meakin J D. Acta Metall, 1959; 7: 614
[10] Kowalewski Z. Arch Metall, 1992; 37: 65
[11] Wilshire B, Palmer C J. Scr Mater, 2002; 46: 483
[12] Li W B, Henshall J L, Hooper R M, Eastering E. ActaMetall, 1991; 39: 3099
[13] Chang H, Alstetter C J, Averback R S. J Mater Res, 1992;7: 2962
[14] Mann A B, Pethica J B. MRS Symp Proc, 1997; 436: 153
[15] Shen B L, Itoi T, Yamasaki T, Ogino Y. Scr Mater, 2000; 42: 893
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[7] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[8] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[9] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[10] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[11] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[12] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[13] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[14] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[15] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
No Suggested Reading articles found!