Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (10): 1035-1039    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF NANOCRYSTALLIZATION ON THE CORROSION RESISTANCE OF K38G SUPERALLOY IN CO ATMOSPHERE
WANG Fuhui (Institute of Corrosion and Protection of Metals; Chinese academy of Sciences; Shenyang 110015) D.J.Young (School of Materials Science and Engineering; University of New South Wales; Sydney 2052; australia)
Cite this article: 

WANG Fuhui (Institute of Corrosion and Protection of Metals; Chinese academy of Sciences; Shenyang 110015) D.J.Young (School of Materials Science and Engineering; University of New South Wales; Sydney 2052; australia). EFFECT OF NANOCRYSTALLIZATION ON THE CORROSION RESISTANCE OF K38G SUPERALLOY IN CO ATMOSPHERE. Acta Metall Sin, 1997, 33(10): 1035-1039.

Download:  PDF(1824KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Corrosion resistance of the cast superalloy K38G and its sputtered nanocrystalline coating was investigated in CO in the temperature range 850-1000℃. The methods included thermogravimetric measurements, X-ray diffraction, and SEM with EDaX.The results indicated that the cast K38G alloy formed Cr2O3 and TiO2 scales, which followed parabolic rate law at any temperature in CO. The sputtered K38G nanocrystalline coating, however, formed al2O3 scale as a result of the enhancement of the selective oxidation of aluminium by nanocrystallization. The weight gain of the nanocrystalline coating is about 3-5 times Smaller than that of the cast alloy. Therefore nanocrystallization significantly improves the corrosion resistance of K38G superalloy.
Key words:  corrosion      CO atmosphere      K38G alloy      nanocrystallization     
Received:  18 October 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I10/1035

1 Wagner C. Z Elektrochem. 1959; 63: 772
2 Giggens C S ,Pettit F S. Trans Metall aIME 1969;245:2509
3 Yurek G J ,Eisen D,Garratt-Reed a.Metall Trans,1982;a13:473
4 Merz M D. Metall Trans, 1979; a10:71
5 Baer D R,Merz M D.Metall Transt 1980;a11:173
6 Basu S N Yurek G J.Oxid Met,1991;35:441
7 Prtater J T,Bradly E R Baer D R.J Electrochem Soc,1986;133:821
8 Lou H,Wang F,Xia B Zhang L.Oxid Met,1992;38:299
9 Lou H,Zhu S,Wang F.Oxid Met,1995;43:317
10 Lou H,Wang F, Zhu S, Xia B, Zhang L Sur f Coat Technol, 1994; 63: 105
11楼翰一,王福会,夏邦杰,张立新.腐蚀科学与防护技术,1993;5:101
12楼翰一,朱圣龙,王福会.腐蚀科学与防护技术,1993;5:203
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[4] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[5] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[6] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[7] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[12] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[13] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!