Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (9): 913-920    DOI:
Current Issue | Archive | Adv Search |
STUDY OF(α-γ_r) REVERSE TRANSFORMATION TEXTURE IN Fe-30Ni ALLOY BY USE OF ODF THEORY
SUN Lijuan (Beijing University of Aeronautics and Astronautics; Beijing 100083); LIU Weipeng (Beijing Polytechnic University; Beijing 100022)H J Bunge (Department of Physical Metallurgy; TU Clausthal FRG)
Cite this article: 

SUN Lijuan (Beijing University of Aeronautics and Astronautics; Beijing 100083); LIU Weipeng (Beijing Polytechnic University; Beijing 100022)H J Bunge (Department of Physical Metallurgy; TU Clausthal FRG). STUDY OF(α-γ_r) REVERSE TRANSFORMATION TEXTURE IN Fe-30Ni ALLOY BY USE OF ODF THEORY. Acta Metall Sin, 1996, 32(9): 913-920.

Download:  PDF(569KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The original structure of Fe-30Ni alloy consisted of deformation-induced martensite, quenching martensite and retained austenite. After heating to different temperatures the ODF of austenite and martensite were determined. The result shows that at lower temperatures the texture of austenite reverts to the original texture of cold rolled austenite and the transformation is carried out by a shear-mechanism with strong variant selection. In the higher temperature range the transformation is carried out by an oriented-growth mechanism and the texture of retransformed austenite deviates from that of cold-rolled austenite. From the difference of ODF a " transformation-stop" temperature has been found, which is orientation-dependent and corresponding to the change of transformation mechanism. For the orientation with higher transformation-stop temperature, the transformation controlled by an oriented-growth mechanism will begin later.
Key words:  texture      martensite reverse transformation      Fe-Ni alloy     
Received:  18 September 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I9/913

1KesslerH,PitschW.ArchEisenhuettenwes,1968;39:4692GrewenJ,WassermannG.Texture,1975;2:453ItoK.TransIronSteelInstJpn,1980;20;6244WelchPI.TextureCrystSolids,1980;4:995BungeHJ.TextureAnalysisinMaterialScience.London:Butterworths,19822
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[7] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. 金属学报, 2020, 56(12): 1667-1680.
[12] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[13] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[14] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[15] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
No Suggested Reading articles found!