Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (8): 867-871    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF PRESSURE ON GRAIN SIZE OF CRYSTALLIZED PHASE α-Fe(Mo,Si)IN AMORPHOUS (Fe_(0.99)Mo_(0.01))_(78)Si_9B_(13)ALLOYS
YAO Bin;HUA Zhong; MIN Chunzong; WANG Aimin; LIU Haozhe; DING Bingzhe; HU Zhuangqi 1) Sipins Normal Collexe; Sipins 136000 2) State Key Laboratory of RSA; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015 (Manuscript received 1995-11-22; in revised form 1996-03-20)
Cite this article: 

YAO Bin;HUA Zhong; MIN Chunzong; WANG Aimin; LIU Haozhe; DING Bingzhe; HU Zhuangqi 1) Sipins Normal Collexe; Sipins 136000 2) State Key Laboratory of RSA; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015 (Manuscript received 1995-11-22; in revised form 1996-03-20). EFFECT OF PRESSURE ON GRAIN SIZE OF CRYSTALLIZED PHASE α-Fe(Mo,Si)IN AMORPHOUS (Fe_(0.99)Mo_(0.01))_(78)Si_9B_(13)ALLOYS. Acta Metall Sin, 1996, 32(8): 867-871.

Download:  PDF(312KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Effects of pressure and temperature on grain size of nanocrystalline α-Fe(Mo,Si) produced by annealing amorphous (Fe_(0.99)Mo_(0.01)_(78)Si_9B_(13) alloys in temperature range from 723 to 933 K under pressures range of 3 to 6 GPa were studied. It is found that the effect of pressure on α-Fe(Mo,Si) grain size results mainly from nucleation rate, and its basic cause is the effect on melting point. Yet the effect of pressure, decreasing growth rate, on the fomiation temperature and critical pressure of smallest grain size of α-Fe(Mo,Si) can be negligible. Correspondent: (YAO Bin, associate professor, Physics Department, Siping Normal College,Siping 136000)
Key words:  high pressure      crystallization      nanocrystal      Fe-Mo-Si-B      amorphous alloy     
Received:  18 August 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I8/867

1YoshizawaY,YamanchiK,OgumaS.EP0271657,1987:A22MakinoA,SusukiK.MaterSciEng,1994;A179//A180:1273LuK,WangJT,WeiWD.JApplPhys,1991;69:5224IwasakiH,MasumotoT.JMaterSci,1978;13:21715WangWK,IwasakiH,FwkamachiK.JMaterSci,1980;15:27016WangWK,IwasakiH.JMaterSci,1983;18:37657UhlmannDR,HaysJF,TurnbullD.PhyschemGlasses,1966;7:1598OnoratoPIK,UhlmannDR.JNon-CrystSolids,1976;22:3679姚斌.中国科学院金属研究所博士学位论文,199510BrazhkinVV,LarchevVI,PopovaSV.PhysScr,1989;39:36111MirwakdPW.Pooc7thAIRAPIIntConf,Vol,I,London:Plenum,1979:361
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[5] CAO Shuting, ZHANG Shaohua, ZHANG Jian. Combustion Behavior of GH4061 Alloy in High Pressure and Oxygen-Enriched Atmosphere[J]. 金属学报, 2023, 59(4): 547-555.
[6] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[8] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[9] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[10] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[11] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[12] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[13] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[14] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[15] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
No Suggested Reading articles found!