Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (8): 356-362    DOI:
Current Issue | Archive | Adv Search |
PHASE STRUCTURE TRANSITION OF LIQUID COPPER DURING RAPID COOLING BY MD SIMULATION
LI Xiaoping; HAN Qiyong (University of Science and Technology Beijing;Beijing 100083); LIU Hongbo; CHEN Kuiying;HU Zhuangqi(State Key Laboratory of RSA ;Institute of Metal Research; Chinese Academy of Sciences;Shenyang 110015)
Cite this article: 

LI Xiaoping; HAN Qiyong (University of Science and Technology Beijing;Beijing 100083); LIU Hongbo; CHEN Kuiying;HU Zhuangqi(State Key Laboratory of RSA ;Institute of Metal Research; Chinese Academy of Sciences;Shenyang 110015). PHASE STRUCTURE TRANSITION OF LIQUID COPPER DURING RAPID COOLING BY MD SIMULATION. Acta Metall Sin, 1995, 31(8): 356-362.

Download:  PDF(450KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The structural characteristics of liquid Cu and structural evolution during rapid cooling have been simulated by MD technique. EAM was used as many-body interaction.Bond orientational order parameters and pair analysis technique were applied to detect the microstructure of liquid, supercooled liquid. non- crystalline and crystalline states. It was shown that EAM is able to describe the complicated disorder system. The calculated pair distribution function was almost the same as the experimental result.The calculated critical point of non-crystalline transition was in reasonable agreement with theoretical value.LI Xiaoping,Department of Physical Chemistry, University of Science and Technology Beijing,Beijing 100083
Key words:  embedded atom method      liquid metals      Cu      rapid solidification      MD simulation     
Received:  18 August 1995     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I8/356

1DawMS,BaskesMI.PhysRevLett,1983;50:12852DawMS,BaskesMI.PhysRev.1984;B29:64433FoilesSM.DawMS,BaskesMI.PhysRev.1986;B33:79834DawMS.SurfSciLett,1986;166:L1615MeiJ,DavenportJW.PhysRev,1992;B46:216RoseJH,SmithJR.GuinerF.FernateJ.PhysRev.1984;B29:29637SangsterMJL,DixonM.AdvPhys,1976;25:2478SteinhardtPJ,NelsonDR.RonchottiM.PhysRey,1983;B28:7849HoneycuttJD.AndersenHC.JPhysChem,1983;91:495010WasedaY.TheStructureofNon-crystallineMaterials.NewYork:McGRAW-Hill,1981:29211AbrahamFF.JChemPhys,1980;72:35912LiuCF,WangSJ.PhysCondensMatter,1992;4:672913ChenKY,LiuHB,HuZQ.JPhysCondensMatter,tobepublishedX
[1] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[5] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[6] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[7] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[8] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[11] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[12] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[13] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[14] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[15] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
No Suggested Reading articles found!