Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (12): 39-46    DOI:
Current Issue | Archive | Adv Search |
HIGH RESOLUTION ELECTRON MICROSCOPIC STUDY OF IMMISCIBLE Cu-Fe SYSTEM DURING MECHANICAL ALLOYING
WU Yukun;HUANG Jianyu;HE Anqiang;HU Kuiyi;MENG Xiangmin Laboratory of Atomic Imaging of Solids; Institute of Metal Research; Academia Sinica; Shenyang
Cite this article: 

WU Yukun;HUANG Jianyu;HE Anqiang;HU Kuiyi;MENG Xiangmin Laboratory of Atomic Imaging of Solids; Institute of Metal Research; Academia Sinica; Shenyang. HIGH RESOLUTION ELECTRON MICROSCOPIC STUDY OF IMMISCIBLE Cu-Fe SYSTEM DURING MECHANICAL ALLOYING. Acta Metall Sin, 1993, 29(12): 39-46.

Download:  PDF(3607KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Supersaturated solid solutions have been obtained by mechanical alloying inCu-Fe system which are immiscible at room temperature. The fcc phase range has been ex-tended to x>35 at.-% Cu. High resolution electron microscope images show that thereexist N-W orientation relationship,i.e. < 001 > α//<110>γ and < 110 > α// < 111 > γbetween bcc phase and fcc phase after 3h milling. It is quite possible that inverse martensitictransformation has occurred during mechanical alloying and the extension of fcc phase rangeclosely relates to this transformation. The fracture and refinement of particles, and cold-weld-ing images were also observed by using a high resolution electron microscope. After 60h me-chanical alloying, homogenous nanocrystals with particle size about 10 nm formed.
Key words:  Cu-Fe      mechanical alloying      high resolution electron microscope      supersaturated solid solution      martensitic transformation     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I12/39

1 Schwarz R B, Koch C C. Appl Phys Lett, 1989; 49: 146
2 Eckert J, Schultz L, Urban K. Appl Phys Lett, 1988; 55: 117
3 Hellstern E, Fech H J, Fu Z, Johnson W L. J Appl Phys, 1989; 65. 305
4 Eckert J, Holzer J C, Krill C E, Ⅲ, Johnson W L. J Mater Res, 1992; 7: 1751
5 Schultz l. Mater Sci Eng 1989; 97: 15.
6 Massalski T B. Binary Alloys Phase Diagram, 2nd ed, Metals Park, Ohio. ASM INTERNATIONAL, 1990
7 Uenishi k, Kobayashi K F, Nasu S, Hatano H, Ishibara K N, Singu P H. Z Metalk, 1992; 83. 132
8 杨元政,马学鸣,董远达.金属学报,1992;28:A399
9 Eckert J, Holzer J C, Krill C E, Ⅲ, Johnson W L. J Mater Res. 1992; 7: 1980
10 齐民,朱敏,刘文革,刘伟,杨大智.材料科学进展.1993;7:31
11 Yavari A R, Desre P J, Benameur T. Phys Rev Lett, 1992, 68: 2235
12 黄建宇,吴玉琨,胡魁毅,孟祥敏.金属学报,1993;29:60
13 Huang J Y, He A Q, Wu Y K. J Appl Phys (Submitted)
14 Schwarz R B. Petrich C K, Saw C K, J Non-Cryst Solids, 1986; 76: 281
15 Hellstern E, Schultz L. Appl Phys Lett, 1988; 48: 124
16 Klement W, Jr. Trans AIME, 1986; 233. 1180
17 Guinier A. X-ray Diffraction. Freeman, Sanfrancisco, CA, 1963; 124
[1] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[3] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[6] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[7] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[8] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[9] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[10] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[11] Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. 金属学报, 2018, 54(10): 1461-1470.
[12] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[13] Xue WANG,Lei HU,Dongxu CHEN,Songtao SUN,Liquan LI. Effect of Martensitic Transformation on Stress Evolution in Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes[J]. 金属学报, 2017, 53(7): 888-896.
[14] Kejian LI,Zhipeng CAI,Yao WU,Jiluan PAN. Research on Austenite Transformation of FB2 Heat-Resistant Steel During Welding Heating Process[J]. 金属学报, 2017, 53(7): 778-788.
[15] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
No Suggested Reading articles found!