Please wait a minute...
Acta Metall Sin  1992, Vol. 28 Issue (5): 10-15    DOI:
Current Issue | Archive | Adv Search |
STRUCTURE AND SURFACE CONDITION OF ULTRAFINE Al PARTICLES
SUN Xiukui;CHEN Wenxiu;XU Jian;FAN Xueshu;WEI Wenduo;WU Yukun;PENG Yingguo State Key Laboratory of Rapidly Solodified Non-Equilibrium Alloys; Institute of Metal Research; Academia Sinica; Shenyang; Laboratory of Atomic Imaging of Solids; Institute of Metal Research; Academia Sinica; Shenyang; Corespondent assciate professor; Institute of Metal Research; Academia Sinica; Shenyang 110015)
Cite this article: 

SUN Xiukui;CHEN Wenxiu;XU Jian;FAN Xueshu;WEI Wenduo;WU Yukun;PENG Yingguo State Key Laboratory of Rapidly Solodified Non-Equilibrium Alloys; Institute of Metal Research; Academia Sinica; Shenyang; Laboratory of Atomic Imaging of Solids; Institute of Metal Research; Academia Sinica; Shenyang; Corespondent assciate professor; Institute of Metal Research; Academia Sinica; Shenyang 110015). STRUCTURE AND SURFACE CONDITION OF ULTRAFINE Al PARTICLES. Acta Metall Sin, 1992, 28(5): 10-15.

Download:  PDF(1651KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The crystal habit, crystalline structure, surface condition and composition ofthe ultrafine Al particles, prepared by an inert gas evaporation method, were studied in detailby means of high resolution transmission electron microscope, X-ray diffraction and X-rayphoto-electron spectrum. The particles are of clear crystal habits, single crystal in a large ma-jority and fcc crystalline structure with α_0=0.405 nm. A protective layer of amorphousAl_2O_3, 2 nm in average thickness, against oxidizing further was found around the particles. Itis believed that the ultrafine Al particles prepared by the inert gas evaporation method arevery stable in atmosphere.
Key words:  ultrafine Al particle      structure      surface condition      amorphous alumina     
Received:  18 May 1992     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1992/V28/I5/10

1 Kimoto K, Kamiya Y, Nonoyama M, Uyeda R. Jpn J Appl Phys, 1963; 2: 702
2 Kimoto K, Nishida Ⅰ. Jpn J Appl Phys, 1967; 6: 1047
3 Granqvist C G, Buhrman R A. J Appl Phys, 1976; 47: 2200
4 徐坚,孙秀魁,陈文绣,范学书,魏文锋.材料科学进展,待发表
5 Kimoto K, Nishida Ⅰ. Jpn J Appl Phys, 1977; 16: 941
6 Wagner C D, Riggs W M, Davis L E, Monlder J F. In: Muilenburg G E ed., Handbook of X--ray Photo--Electron Spectroscopy, Perkin--Elmer Corporation, 1979
7 Wada N. Jpn J Appl Phys, 1967; 6: 553
8 Wada N. Jpn J Appl Phys, 1968; 7: 1287
9 Kaito C. Jpn J Appl Phys, 1985; 24: 261
10 Revesz A G, Fehlner F P. Oxid Met, 1981; 15: 297
11 Sako S, Ohshima K, Fujita T. J Phys Soc Jpn, 1990; 59: 662b
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!