Please wait a minute...
Acta Metall Sin  1991, Vol. 27 Issue (4): 100-104    DOI:
Current Issue | Archive | Adv Search |
MOLECULAR DYNAMJCS SIMULATION OF MOLTEN NaF
ZHANC Jing;CHENG Zhaonian;CHEN Nianyi Shanghai Institute of Metallurgy; Academia Sinica
Cite this article: 

ZHANC Jing;CHENG Zhaonian;CHEN Nianyi Shanghai Institute of Metallurgy; Academia Sinica. MOLECULAR DYNAMJCS SIMULATION OF MOLTEN NaF. Acta Metall Sin, 1991, 27(4): 100-104.

Download:  PDF(358KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The structure and transport properties in molten NaF have been studi-ed using the method of molecular dynamics simulation. The calculations are basedon two models of interionic potentials, which are Femi-Tosi potential (FT) and theFemi-Tosi potential without Van der Waals attractive item (FT′). The radial distri-bution function (RDF) and the Na~+ and F~- selfdiffusion coefficients have been cal-culated. The calculated results are in good agreement with the experimental ones.The calculation shows that the two models give nearly identical radial distributionfunction and self-diffusion coefficient, but the results of FT potential are a littlebetter than those of FT′potential.
Key words:  molten NaF      molecular dynamics      computerized simulation     
Received:  18 April 1991     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1991/V27/I4/100

1 Sangster M J L, Dixon M. Adv Phys, 1976; 25: 247
2 Kawamura K, Okada I. Atomic Energy Rev, 1978; 16: 209
3 Rovere M, Tosi M T. Rep Prog Phys, 1986; 49: 1001
4 Anastasiou N, Fincham D. Comput Phys Commun, 1982; 25: 159
5 Janz G J. Melten Salts Handbook, New York: Academic Press, 1967, 46
6 Levy H A, Danford M D. In: Blander M ed., Molten Salt Chemistry, New York: Wiley, 1964: 109
7 Janz G J, Bansal N P. J Phys Chem Ref Data, 1982; 11: 516
[1] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[2] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[3] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[6] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[7] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[8] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[9] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[10] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[11] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[12] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[13] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[14] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[15] Jin WANG, Liming YU, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe[J]. 金属学报, 2018, 54(1): 47-54.
No Suggested Reading articles found!