Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (5): 70-72    DOI:
Current Issue | Archive | Adv Search |
GROWTH OF THERMOELASTIC MARTENSITE
DENG Yongrui;G. S. ANSELL University of Science and Technology Beijing Colorado School of Mines; Golden; CO 80401; USA
Cite this article: 

DENG Yongrui;G. S. ANSELL University of Science and Technology Beijing Colorado School of Mines; Golden; CO 80401; USA. GROWTH OF THERMOELASTIC MARTENSITE. Acta Metall Sin, 1990, 26(5): 70-72.

Download:  PDF(562KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The growth of thermoelastic martensit6 in a Cu-29%Zn-3%Al alloy has beeninvestigated experimentally and theoretically. The metallographic observations showed that thegrowth occurred thermoelastically, i. e. reversibly, in the radial direction as well as in thethickening direction. This is not consistent with the theories of Cohen and some others. A modelhas been suggested by the authors to explain the thermoelastidty of the growth. The basic ideais: the elastic strain distribution is highly heterogeneous and the growth is controlled by thelocal elastic strain energy at the growth frontier area. The calculation results from the modelbased on Eshelby's theory are consistent with the observations.
Key words:  thermoelasticity      martensite      Cu-Zn-Al alloy     
Received:  18 May 1990     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I5/70

1 Kaufman L, Cohen M. Prog Met Phys, 1958; 7: 165
2 Olson G B, Cohen M. Scr Metall, 1975; 9: 1247
3 Olson G B, Cohen M. Scr Metall, 1977; 11: 345
4 Ling H C, Owen W S. Acta Metall, 1981; 29: 1721
5 Eshelby J D. Prog Solid Mech, 1961; 2: 87
6 Eshelby J D. Proc R Soc, London, Ser. A, 1959; 252: 561
7 Eshelby J D. Proc R Soc, London, Ser. A, 1957; 241: 376
8 Deng Y, Ansell G S. Acta Metall, 1990; 38: 69
9 Deng Y. Doctoral Thesis, Rensselaer Polytechnic Institute, USA, 1984
10 Wayman C M, Tong H C. Scr Metall, 1977; 11: 341>
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[4] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[6] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[7] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[8] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[9] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[10] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[11] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[12] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[13] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[14] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[15] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
No Suggested Reading articles found!