Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (1): 81-85    DOI:
论文 Current Issue | Archive | Adv Search |
COMPUTERIZED SIMULATION OF MOLTEN SALT SOLUTION OF Li, K?F, Cl SYSTEM BY MOLECULAR DYNAMICS METHOD
 SHAO  Dun; XU  Hua; CHEN  Nian-Yi
Shanghai University of Science and Technology Shanghai Institute of Metallurgy; Academia Sinica associate professor;Department of Chemistry;Shanghai University of Science and Technology; Shanghai 201800
Cite this article: 

SHAO Dun; XU Hua; CHEN Nian-Yi. COMPUTERIZED SIMULATION OF MOLTEN SALT SOLUTION OF Li, K?F, Cl SYSTEM BY MOLECULAR DYNAMICS METHOD. Acta Metall Sin, 1990, 26(1): 81-85.

Download:  PDF(419KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The structure and properties of molten salt solution of Li, K | F, Clsystem have been investigated by computerized simulation of molecular dynamicsmethod. The partial RDF, the partial molar energy of mixing and the diffusioncoefficient of Li~+, K~+, F~- and Cl~- have been calculated. The results of calculationare in agreement with the experimental values. The regularities of the distributionof ions and holes are discussed based on the results of computerized simulation.

Key words:  alkali halide molten salt      molecular dynamics      computerized simulation     
Received:  18 January 1990     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I1/81

1 Rovere M, Tosi M P. Rep Prog Phys, 1986; 49: 1001
2 Sangster M J L, Dixon M. Adv Phys, 1976; 25: 247
3 Anastasion N, Fincham D, J Computer Phys Commun, 1982; 25: 159
4 Tosi M P, Fumi F G. J Phys Chem Solids, 1964; 25: 45
5 Janz G J. Molten Salts Handbook, New York: Academic Press, 1967
6 陈念贻,徐驰,李通化,江乃雄.中国科学,1987;B1:21
7 Lenke R, Vebelhack W, Klemm A. "Z Naturforsch, 1973; 28A: 881
8 Grjotheim K, Zuca S. Acta Chem Scand, 1968; 22: 531
9 Bockris J O' M, Richards S R, Nani S L. J Phys Chem 1965; 69: 16277

[1] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[2] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[3] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[6] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[7] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[8] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[9] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[10] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[11] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[12] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[13] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[14] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[15] Jin WANG, Liming YU, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe[J]. 金属学报, 2018, 54(1): 47-54.
No Suggested Reading articles found!