Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 674-684    DOI: 10.3724/SP.J.1037.2014.00041
Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF 20SiMn STEEL REBAR IN CARBONATE/BICARBONATE SOLUTIONS WITH THE SAME pH VALUE
CAO Fengting, WEI Jie, DONG Junhua(), KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

CAO Fengting, WEI Jie, DONG Junhua, KE Wei. CORROSION BEHAVIOR OF 20SiMn STEEL REBAR IN CARBONATE/BICARBONATE SOLUTIONS WITH THE SAME pH VALUE. Acta Metall Sin, 2014, 50(6): 674-684.

Download:  HTML  PDF(2247KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The aggressive ions, such as Cl- and SO42-, as well as the carbonation caused by CO2 from the air are two main reasons for the depassivation of steel rebar in reinforcement concrete. Under normal conditions, the pH value of concrete pore solution is taken as the criterion for determining whether the corrosion of steel occurs or not. However, carbonation process results not only in the decrease of the pH value of concrete pore solution, but also in the accession of HCO3- and CO32-. It is demonstrated that these two ions are able to influence the corrosion behaviors of steel rebar. Additionally, the failure of reinforcement concrete is a time consuming process, so the corrosion evolution laws of steel at the presence of HCO3- and CO32- is necessary to study systemically. Nevertheless, little relative work has been done so far. In this work, the electrochemical behavior of 20SiMn steel in three different content carbonate buffer solutions (0.01, 0.05 and 0.5 mol/L) was studied using electrochemical techniques (polarization curves, free corrosion potential measurements, EIS, Mott-Schottcky (MS) curves and cycle voltage curves) and surface analysis techniques (SEM and in situ Raman spectroscopy), compared with that in NaOH solution (0.437×10-3 mol/L ). These four solutions are of the same pH value 10.64. The results indicated that 20SiMn steel was in active corrosion state in NaOH solution and low content carbonate solution, while it was in passive state in high content carbonate solutions. In NaOH solution, 20SiMn steel was destroyed by uniform corrosion and the corrosion products were a-Fe2O3 and g-FeOOH, transformed from Fe(OH)2. In 0.01 mol/L carbonate solution, 20SiMn steel was destroyed by localized corrosion, and the final products were a-Fe2O3 and b-FeOOH, developed from the intermediate products GRs (green rusts). The passive film formed on 20SiMn steel was more resistive in 0.05 mol/L carbonate solution than that in 0.5 mol/L due to the formation of soluble complex anion Fe(CO3)22- in latter solution. There was a maximum corrosion resistance of the passive film with the increase of carbonate content.

Key words:  20SiMn steel      carbonate buffer solution      steel rebar      electrochemistry      Raman spectroscopy      corrosion     
Received:  20 January 2014     
ZTFLH:  TG174  
Fund: Supported by National Natural Science Foundation of China (No.51131007)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2014.00041     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/674

Fig.1  Micro-corrosion morphologies of 20SiMn steel immersed for 7 d in 0.437×10-3 mol/L NaOH solution (a), 0.01 mol/L (b), 0.05 mol/L (c) and 0.5 mol/L (d) carbonate buffer solutions
Fig.2  In situ Raman spectra of 20SiMn steel immersed for 7 d in 0.437×10-3 mol/L NaOH (a) and 0.01 mol/L carbonate buffer solution (b)
Fig.3  Micro-corrosion morphologies of 20SiMn steel (a) and after removal of corrosion products immersed in 0.01 mol/L carbonate buffer solution for 10 min (b), 30 min (c), 1 h (d) and 7 d (e), and in 0.437×10-3 mol/L NaOH solution for 7 d (f) (Insets show the corresponding enlarged images)
Fig.4  Potentiodynamic polarization curves of 20SiMn steel in 0.437×10-3 mol/L NaOH, and 0.01, 0.05 and 0.5 mol/L carbonate buffer solutions
Fig.5  Open circuit potential of 20SiMn steel in 0.437×10-3 mol/L NaOH, and 0.01, 0.05 and 0.5 mol/L carbonate buffer solutions
Fig.6  EISs of 20SiMn steel immersed for 7 d in 0.437×10-3 mol/L NaOH (a), and 0.01 mol/L (b), 0.05 mol/L (c) and 0.5 mol/L (d) carbonate buffer solutions
Fig.7  Fig.7 Equivalent electrical circuit used to fit the EIS results in 0.437×10-3 mol/L NaOH (a), and 0.01 mol/L (b), 0.05 mol/L (a) and 0.5 mol/L (a) carbonate solutions (Rs—solution resistance, Qdl—constant phase element of electric double layer, Rct—charge transfer resistance, ZW—Warburg resistance, Q1—constant phase element of rust layer or passive film layer, R1—resistance of rust layer or passive film layer)
Immerse time
d
Rs
Ω·cm2
Q1
Ω-1·cm-2·sn
n1 R1
Ω·cm2
Qdl
Ω-1·cm-2·sn
nct Rct
Ω·cm2
1 33.19 0.00103 0.8726 52.35 7.025×10-4 0.8473 1103
2 42.55 0.00175 0.9408 36.88 7.125×10-4 0.8522 1454
3 78.33 0.09831 1 263.3 7.515×10-4 0.827 1207
4 90.28 0.00237 0.5975 1620 0.00415 1 312
5 67.82 0.00187 0.6404 1057 0.0057 1 161
6 70.91 0.00124 1 8.396 0.00154 0.7005 1186
7 34.11 1.937×10-8 0.8873 106.2 0.00175 0.6847 1095
Table 1  EIS fitting results of the parameters in 0.437×10-3 mol/L NaOH solution
Immerse time
d
Rs
Ω·cm2
Qct
Ω-1·cm-2·sn
nct Rct
Ω·cm2
W
Ω-1·cm-2·s0.5
1 28.65 8.905×10-4 0.7949 2348 0.00955
2 59.61 0.001 0.7961 2027 0.00811
3 68.75 9.561×10-4 0.7811 1776 0.01129
4 58.43 9.039×10-4 0.7756 1965 0.00694
5 75.14 9.633×10-4 0.7520 2186 0.00623
6 56.39 9.285×10-4 0.7552 2280 0.00439
7 64.84 8.534×10-4 0.7465 2371 0.00193
Table 2  EIS fitting results of the parameters in 0.01 mol/L carbonate buffer solution
Fig.8  Relationships between Rct or R1 and immerse time in 0.437×10-3 mol/L NaOH and 0.01 mol/L carbonate buffer solution (a), and 0.05 mol/L and 0.5 mol/L carbonate buffer solutions (b)
Immerse time
d
Rs
Ω·cm2
Q1
Ω-1·cm-2·sn
n1 R1
Ω·cm2
Qct
Ω-1·cm-2·sn
nct Rct
Ω·cm2
1 29.71 4.796×10-5 0.9682 1.004×106 1.034×10-4 0.8553 24940
2 35.20 4.731×10-5 0.9819 1.145×106 8.242×10-5 0.8585 36300
3 30.27 4.414×10-5 0.9718 1.256×106 8.412×10-5 0.8653 36490
4 27.96 4.642×10-5 0.9641 1.078×106 8.349×10-5 0.8648 34270
5 26.59 4.457×10-5 0.9794 1.196×106 7.351×10-5 0.8660 44470
6 33.17 4.354×10-5 0.9792 1.236×106 7.237×10-5 0.8653 46890
7 24.01 4.182×10-5 0.9758 1.254×106 7.383×10-5 0.8678 45270
Table 3  EIS fitting results of the parameters in 0.05 mol/L carbonate buffer solution
Immerse time
d
Rs
Ω·cm2
Q1
Ω-1·cm-2·sn
n1 R1
Ω·cm2
Qct
Ω-1·cm-2·sn
nct Rct
Ω·cm2
1 3.222 2.339×10-4 0.8779 57790 9.592×10-5 0.9111 3975
2 4.804 2.320×10-4 0.8754 66880 9.332×10-5 0.9016 5297
3 5.499 2.218×10-4 0.8802 72840 9.025×10-5 0.9006 6201
4 3.539 2.133×10-4 0.8883 75630 8.630×10-5 0.9058 6585
5 10.86 8.927×10-5 0.9358 2.946×105 1.225×10-4 0.9140 1.310×104
6 10.53 7.277×10-5 0.9365 4.733×105 1.384×10-4 0.9088 1.257×104
7 10.03 7.713×10-5 0.9354 4.102×105 1.335×10-4 0.9146 1.270×104
Table 4  EIS fitting results of the parameters in 0.5 mol/L carbonate buffer solution
Fig.9  Mott-Schottcky (MS) plots of 20SiMn steel immersed for 7 d in 0.05 and 0.5 mol/L carbonate buffer solutions
Fig.10  Cyclic voltammograms for the 20SiMn steel in 0.437×10-3 mol/L NaOH (a), and 0.01 mol/L (b), 0.05 mol/L (c) and 0.5 mol/L (d) carbonate buffer solutions
[1] Ahmd S. Cem Concr Compos, 2003; 25: 459
[2] Biezma M V, San Cristobal J R. Corros Eng Sci Technol, 2005; 40: 344
[3] Page C L, Treadaway K W J. Nature, 1982; 297: 109
[4] Page C L, Ngala V T, Page M M. Mag Concr Res, 2000; 52: 25
[5] Gaidis J M. Cem Concr Compos, 2004; 26: 181
[6] Dantan N, Höhse M, Karasyov A A, Wolfbeis O S. Tm-Technisches Messen, 2007; 74: 211
[7] Singh D D N, hosh R G. Surf Coat Technol, 2006; 201: 90
[8] Xu H, Liu Y, Chen W, Du R G, Lin C J. Electrochim Acta, 2009; 54: 4067
[9] Xue H B, Cheng Y F. JMEPEG, 2010; 19: 1311
[10] Fu A Q, Cheng Y F. Corros Sci, 2010; 52: 612
[11] Li J B, Zuo J E. Chin J Chem, 2008; 26: 1799
[12] Rangel C M, Fonseca I T, Leião R A. Electrochim Acta, 1986; 31: 1659
[13] Rangel C M, Leião R A. Electrochim Acta, 1989; 34: 255
[14] Thomas J G N, Nurse T J, Walker R. Br Corros J, 1970; 5: 85
[15] Huet B, L'Hostis V, Miserque F, Idrissi H. Electrochim Acta, 2005; 51: 172
[16] Valentini C R, Moina C A. Corros Sci, 1985; 25: 985
[17] Davies D H, Burstein G T. Corrosion, 1980; 36: 416
[18] Dong J H, Nishimura T, Kodama T. Mater Res Soc Symp Proc, 2002; 713: 85
[19] Nieuwoudt M K, Comins J D, Cukrowski I. Raman Spectrosc J, 2011; 42: 1335
[20] Lee C T, Odziemkowski M S, Shoesmith D W. J Electrochem Soc, 2006; 153: 33
[21] Nieuwoudt M K, Comins J D, Cukrowski I. Raman Spectroscopy, doi: 10.1002/jrs.2837
[22] Fajardo G, Valdez P, Pacheco J. Constr Build Mater, 2009; 23: 768
[23] Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes. New York: Plenum Press, 1980: 316
[24] Li D G, Feng Y R, Bai Z Q, Zhua J W, Zheng M S. Electrochim Acta, 2007; 52: 7877
[25] Castro E B, Valentini C R, Moina C A, Vilche J R, Arvia A J. Corros Sci, 1986; 26: 781
[26] Schrebler Guzmán R S, Vilche J R, Arvía A J. Electrochim Acta 1979; 24: 395
[27] Reffass M, Sabot R, Savall C, Jeannin M, Creus J. Refait P. Corros Sci, 2006; 48: 709
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[3] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[7] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[12] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[13] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!