Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 700-706    DOI: 10.3724/SP.J.1037.2013.00781
Original Article Current Issue | Archive | Adv Search |
INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY
ZHANG Siqian 1), WU Wei 1), CHEN Lili 2), CHE Xin 1), CHEN Lijia 1)
1) School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2) Shenyang Aerosun-Futai Expansion Joint Co. Ltd, Shenyang 110141
Download:  HTML  PDF(3684KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The low-cycle fatigue tests have been conducted for the Mg-7%Zn-0.6%Zr-0.5%Y alloys (mass fraction) subjected to extrusion, aging (T5) and solution plus aging (T6) treatment, respectively. The influence of heat treatment on the fatigue deformation behavior of the alloy has also been systematically investigated. The results show that T5 and T6 treatment can improve the cyclic deformation resistance of Mg-7%Zn-0.6%Zr-0.5%Y alloys. T5 treatment can reduce the fatigue life of the alloy. However, T6 treatment can improve the fatigue life at high total strain amplitudes, and reduce the fatigue life at low total strain amplitudes. The relationship between elastic strain amplitude, plastic strain amplitude and reversals to failure of the alloys can be described by Basquin and Coffin-Manson equations, respectively. For the alloys subjected to both T5 and T6 treatments, the increase in the cyclic deformation resistance is mainly due to the formation of long period stacking ordered (LPSO) phase. The twins formed during the fatigue deformation may be responsible for the decrease in the fatigue life of the alloy subjected to T5 treatment.
Key words:  magnesium alloy      low-cycle fatigue      cyclic       deformation      heat treatment     
Received:  02 December 2013     
ZTFLH:  TG115.5  
Corresponding Authors:  ZHANG Siqian, lecturer, Tel: 13700022372, E-mail: sqzhang@alum.imr.ac.cn   

Cite this article: 

ZHANG Siqian , WU Wei , CHEN Lili , CHE Xin , CHEN Lijia . INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY. Acta Metall Sin, 2014, 50(6): 700-706.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00781     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/700

[1] Avedsain M M, Baker H. Magnesium and Magnesium Alloys. Materials Park, Ohio: ASM International, 1999: 7
[2] Polmear I J. Mater Sci Technol, 1994; 10: 1
[3] Nishikawa Y. Funct Mater, 1999; 19(6): 21
[4] Horikir H, Kato A, Inoue A, Masumoto T. Mater Sci Eng, 1994; A179: 702
[5] Lee S, Lee S H, Kim D H. Metall Mater Trans, 1998; 29A: 1221
[6] Payne R J M, Bailey N. J Inst Met, 1960; 88: 417
[7] Unsworth W. Int J Mater Prod Technol, 1989; 4: 1359
[8] Drits M E, Sviderkaya Z A, Rokhlin L L, Nikitina N I. Met Sci Heat Treat, 1979; 21: 887
[9] Zhao H D, Qin G W, Ren Y P, Pei W L, Chen D, Guo Y. J Alloys Compd, 2011; 509: 627
[10] Wang J, Zhang D P, Fang D Q, Lu H Y, Tang D X, Zhang J H, Meng J. J Alloys Compd, 2008; 454: 194
[11] Luo S Q, Tang A T, Pan F S, Song K, Wang W Q. Trans Nonferrous Met Soc China, 2011; 21: 795
[12] Xu D K, Tang W N, Liu L, Xu Y B, Han E H. J Alloys Compd, 2007; 432: 129
[13] Coffin L F. Trans Am Soc Mech Eng, 1954; 76: 931
[14] Coffin L F. Met Trans, 1972; 3: 1777
[15] Basquin O H. Proc Am Soc Test Mater, 1990; 10: 626
[16] Suresh S, translated by Wang Z G. Fatigue of Materials. Beijing: National Defence Industry Press, 1999: 158
(Suresh S 著, 王中光 译. 材料的疲劳. 北京: 国防工业出版社, 1999: 158)
[17] Eliezer A, Gutman E M, Abramov E, Unigovski Y. J Light Met, 2001; 1: 179
[18] Hilpert M, Wagner L. J Mater Eng Perform, 2000; 9: 402
[19] Xu D K, Liu L, Xu Y B, Han E H. J Alloys Compd, 2008; 454: 123
[20] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Metall Trans, 2001; 42: 1172
[21] Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Acta Mater, 2007; 55: 3899
[22] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Mater Trans, 2001; 42: 1172
[23] Hagihara K, Yokotani N, Umakoshi Y. Intermetallics, 2010; 18: 267
[24] Yang X, Miura H, Sakai T. Mater Trans, 2003; 44: 197
[25] Tome C N, Agnew S R, Blumenthal W R, Bourke M A M, Kaschner G C, Rangaswamy P. Mater Sci Forum, 2003; 408-412: 263
[26] Christian J W, Mahajant S. Prog Mater Sci, 1995; 39: 1
[27] Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Mater Sci Eng, 2007; 445-446: 302
[28] Jain A, Duygulu O, Brown D W, Tome C N, Agnew S R. Mater Sci Eng, 2008; 486: 545
[1] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[2] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[3] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
[4] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[5] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[6] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[7] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[8] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[9] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[10] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[11] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[12] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[13] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[14] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[15] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
No Suggested Reading articles found!