Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 700-706    DOI: 10.3724/SP.J.1037.2013.00781
Current Issue | Archive | Adv Search |
INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY
ZHANG Siqian1(), WU Wei1, CHEN Lili2, CHE Xin1, CHEN Lijia1
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
2 Shenyang Aerosun-Futai Expansion Joint Co. Ltd, Shenyang 110141
Cite this article: 

ZHANG Siqian, WU Wei, CHEN Lili, CHE Xin, CHEN Lijia. INFLUENCE OF HEAT TREATMENT ON LOW-CYCLE FATIGUE BEHAVIOR OF EXTRUDED Mg-7%Zn-0.6%Zr-0.5%Y ALLOY. Acta Metall Sin, 2014, 50(6): 700-706.

Download:  HTML  PDF(3684KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The low-cycle fatigue tests have been conducted for the Mg-7%Zn-0.6%Zr-0.5%Y alloys (mass fraction) subjected to extrusion, aging (T5) and solution plus aging (T6) treatment, respectively. The influence of heat treatment on the fatigue deformation behavior of the alloy has also been systematically investigated. The results show that T5 and T6 treatment can improve the cyclic deformation resistance of Mg-7%Zn-0.6%Zr-0.5%Y alloys. T5 treatment can reduce the fatigue life of the alloy. However, T6 treatment can improve the fatigue life at high total strain amplitudes, and reduce the fatigue life at low total strain amplitudes. The relationship between elastic strain amplitude, plastic strain amplitude and reversals to failure of the alloys can be described by Basquin and Coffin-Manson equations, respectively. For the alloys subjected to both T5 and T6 treatments, the increase in the cyclic deformation resistance is mainly due to the formation of long period stacking ordered (LPSO) phase. The twins formed during the fatigue deformation may be responsible for the decrease in the fatigue life of the alloy subjected to T5 treatment.

Key words:  magnesium alloy      low-cycle fatigue      cyclic deformation      heat treatment     
Received:  02 December 2013     
ZTFLH:  TG115.5  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00781     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/700

Fig.1  Cyclic stress amplitudes of Mg-7%Zn-0.6%Zr-0.5%Y alloys with different states at strain amplitudes (Det/2) of 0.3% (a), 0.45% (b), 0.6% (c), 0.8% (d) and 1.0% (e)
Fig.2  Total strain amplitude versus fatigue life curves of Mg-7%Zn-0.6%Zr -0.5%Y alloys with different states
Fig.3  Elastic (a) and plastic (b) strain amplitudes versus reversals to failure curves for Mg-7%Zn-0.6%Zr-0.5%Y alloys
Fig.4  Cyclic stress-strain curves for Mg-7%Zn-0.6%Zr-0.5%Y alloys
Alloy state σ'f/ MPa b ε'f/ % c K'/ MPa n'
As-extruded 779.30 -0.17453 29.66 -0.72918 714.96 0.21144
T5 1452.35 -0.24987 43.58 -0.88045 853.00 0.20561
T6 1028.05 -0.22335 67.95 -0.83630 508.31 0.19241
Table 1  Strain fatigue parameters of Mg-7%Zn-0.6%Zr-0.5%Y alloys with different states
Fig.5  Fig.5 Microstructures of Mg-7%Zn-0.6%Zr-0.5%Y alloys with different states (Insets show the corresponding SAED patterns of the I phase, long period stacking ordered (LPSO) phase and twins in the alloy)

(a) I phase in the as-extruded alloy with Det/2=0.6%

(b) dislocation in the as-extruded alloy with Det/2=0.6%

(c) LPSO phase in the T5 state alloy with Det/2=1.0%

(d) twins in the T5 state alloy with Det/2=1.0%

(e) I phase in the T6 state alloy with Det/2=1.0%

(f) LPSO phase in the T6 state alloy with Det/2=1.0%

(g) HRTEM image show the LPSO phase in the T6 state alloy with Det/2=1.0%

Fig.6  TEM images to show the dislocation between the LPSO phase (a), and kinking of the LPSO phase in the T5 state (b) with Dεt/2=1.0%
[1] Avedsain M M, Baker H. Magnesium and Magnesium Alloys. Materials Park, Ohio: ASM International, 1999: 7
[2] Polmear I J. Mater Sci Technol, 1994; 10: 1
[3] Nishikawa Y. Funct Mater, 1999; 19(6): 21
[4] Horikir H, Kato A, Inoue A, Masumoto T. Mater Sci Eng, 1994; A179: 702
[5] Lee S, Lee S H, Kim D H. Metall Mater Trans, 1998; 29A: 1221
[6] Payne R J M, Bailey N. J Inst Met, 1960; 88: 417
[7] Unsworth W. Int J Mater Prod Technol, 1989; 4: 1359
[8] Drits M E, Sviderkaya Z A, Rokhlin L L, Nikitina N I. Met Sci Heat Treat, 1979; 21: 887
[9] Zhao H D, Qin G W, Ren Y P, Pei W L, Chen D, Guo Y. J Alloys Compd, 2011; 509: 627
[10] Wang J, Zhang D P, Fang D Q, Lu H Y, Tang D X, Zhang J H, Meng J. J Alloys Compd, 2008; 454: 194
[11] Luo S Q, Tang A T, Pan F S, Song K, Wang W Q. Trans Nonferrous Met Soc China, 2011; 21: 795
[12] Xu D K, Tang W N, Liu L, Xu Y B, Han E H. J Alloys Compd, 2007; 432: 129
[13] Coffin L F. Trans Am Soc Mech Eng, 1954; 76: 931
[14] Coffin L F. Met Trans, 1972; 3: 1777
[15] Basquin O H. Proc Am Soc Test Mater, 1990; 10: 626
[16] Suresh S, translated by Wang Z G. Fatigue of Materials. Beijing: National Defence Industry Press, 1999: 158
(Suresh S 著,王中光 译. 材料的疲劳. 北京: 国防工业出版社, 1999: 158)
[17] Eliezer A, Gutman E M, Abramov E, Unigovski Y. J Light Met, 2001; 1: 179
[18] Hilpert M, Wagner L. J Mater Eng Perform, 2000; 9: 402
[19] Xu D K, Liu L, Xu Y B, Han E H. J Alloys Compd, 2008; 454: 123
[20] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Metall Trans, 2001; 42: 1172
[21] Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Acta Mater, 2007; 55: 3899
[22] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Mater Trans, 2001; 42: 1172
[23] Hagihara K, Yokotani N, Umakoshi Y. Intermetallics, 2010; 18: 267
[24] Yang X, Miura H, Sakai T. Mater Trans, 2003; 44: 197
[25] Tome C N, Agnew S R, Blumenthal W R, Bourke M A M, Kaschner G C, Rangaswamy P. Mater Sci Forum, 2003; 408-412: 263
[26] Christian J W, Mahajant S. Prog Mater Sci, 1995; 39: 1
[27] Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Mater Sci Eng, 2007; 445-446: 302
[28] Jain A, Duygulu O, Brown D W, Tome C N, Agnew S R. Mater Sci Eng, 2008; 486: 545
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[3] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[4] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[5] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[6] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[7] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[8] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[9] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[10] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[11] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[13] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[14] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[15] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
No Suggested Reading articles found!