Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1411-1415    DOI: 10.3724/SP.J.1037.2013.00492
Current Issue | Archive | Adv Search |
TEXTURE EVOLUTION OF Nb MICRO-ALLOYED Fe14Si2 HIGH SILICON STEEL DURING WARM ROLLING
YANG Kun, LIANG Yongfeng, YE Feng, LIN Junpin
State Key Laboratory for Advanced Metal and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

YANG Kun, LIANG Yongfeng, YE Feng, LIN Junpin. TEXTURE EVOLUTION OF Nb MICRO-ALLOYED Fe14Si2 HIGH SILICON STEEL DURING WARM ROLLING. Acta Metall Sin, 2013, 49(11): 1411-1415.

Download:  PDF(2634KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-6.5%Si (mass fraction) alloy possess perfect magnetic properties,though intermetallics of Fe14Si2 phase brought 6.5%Si leads to room temperature brittleness and hinder this significant materials industrialization. Nb was adopted into micro-alloying of Fe-6.5%Si high silicon steel. OM, thermal simulated test machine and XRD were employed to study the influence of Nb on high silicon steel in processing stages. Textures of warm-rolled high silicon steel strips were determined by XRD. The results indicate that Nb could refine the grains during fabrication of high silicon steel. Comparing to the non-Nb micro-alloyed high silicon steel, the grain size were reduced 17.50%, 24.51% and 30.13% in as-cast, forged and hot-rolled microstructure. Compression strength of as-cast specimen was enhanced from 1365 MPa to 1520 MPa with elongation rate from 0.225% to 0.400%. Tensile strength of warm-rolled strip was increased from 573 MPa to 621 MPa with elongation rate from 0.018% to 0.026%. XRD was carried out to indicate the surface texture evolution of warm-rolled high silicon steel with thickness from 0.30-1.68 mm during the warm rolling. The original (011)<100> Goss texture totally transformed to (100)>011> rotating cubetexture with single pass deformation of 26.2%. Then, rotating cube texture completely transformed to {111} fiber texture which remains until the thickness of 0.30 mm with single pass deformation of 22.6%.

Key words:  Fe-6.5%Si      texture      Nb micro-alloying      grain-refining      Fe14Si2     
Received:  15 August 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00492     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1411

[1] Paolinelli S C, Cunha M A. J Magn Magn Mater, 2006; 304: e596

[2] Raviprasad K, Chattopadhyay K. Acta Matall Mater, 1993; 41: 609
[3] Haiji H, Okada K, Hiratani T, Abe M, Ninomiya M. J Magn Magn Mater, 1996; 160: 109
[4] Phway T P P, Moses A J. J Magn Magn Mater, 2008; 320: E611
[5] Oda Y J, Kohno M, Honda A. J Magn Magn Mater, 2008; 320: 2430
[6] Cunha M A, Paolinelli S. J Magn Magn Mater, 2008; 320: 2485
[7] Liang Y F, Lin J P, Ye F, Wang Y L, Chen G L. Met Funct Mater, 2010; 17(2): 43
(梁永锋, 林均品, 叶丰, 王艳丽, 陈国良. 金属功能材料. 2010; 17(2): 43)
[8] Pan L M, Jin J N, Lin J P, Wang J G, Wang Y L, Lin Z, Chen G L. J Funct Mater, 2004; 35: 683
(潘丽梅, 金吉男, 林均品, 王建国, 王艳丽, 林志, 陈国良. 功能材料, 2004; 35: 683)
[9] Ye F, Liang Y F, Wang Y L, Lin J P, Chen G L. Mater Sci Forum, 2010; 638-642: 1428
[10] Chang P H, Preban A G. Acta Metall, 1985; 33: 897
[11] Jiang Z H, Guan Z Z, Lian J S. Mater Sci Eng, 1995; A190: 55
[12] Son Y I, Lee Y K, Park K T, Lee C S, Shin D H. Acta Mater, 2005; 53: 3125
[13] Tsipouridis P, Werner E, Krempaszky C, Tragl E. Steel Res Int, 2006; 77: 654
[14] Delince M, Brechet Y, Embury J D, Geers M G D, Jacques P J, Pardoen T.Acta Mater, 2007; 55: 2337
[15] Mukherjee K, Hazra S S, Militzer M. Metall Mater Trans, 2009; 40A: 2145
[16] Xue C F, Wang X H, Xin Y D. Heat Treat Met, 2003; 28(5): 15
(薛春芳, 王新华, 辛义德. 金属热处理, 2003; 28(5): 15)
[17] Chen S S. Heat Treat Met Abroad, 1996; 17(1-2): 5
(陈善述. 国外金属热处理, 1996; 17(1-2): 5)
[18] Zhao J, Xu H F, Shi J, Li J, Pu J, Cao W Q.  Iron Steel, 2012; 47(8): 57
(赵杰, 徐海峰, 时捷, 李箭, 蒲健, 曹文全. 钢铁, 2012; 47(8): 57)
[19] Szkliniarz A. Solid State Phenom, 2012; 191: 221
[20] Weng Y Q. Super Fine Grained Steels. Beijing: Metallurgical Industry Press, 2008: 327
(翁宇庆. 超细晶钢. 北京: 冶金工业出版社, 2008: 327)
[21] Lu J, Jin L, Zeng X Q, Ding W J. Foundry Eng, 2008; (1): 32
(路军, 靳丽, 曾小勤, 丁文江. 铸造工程, 2008; (1): 32)
[22] Belyakov A, Gao W, Miura H, Sakai T. Metall Mater Trans, 1998; 29A: 2957
[23] Zhong T B, Lin J P, Chen G L.  J Funct Mater, 2000; 31: 361
(钟太彬, 林均品, 陈国良. 功能材料, 2000; 31: 361)
[24] Liu J L, Sha Y H, Zhang F, Yao Y C, Li J C, Zuo L.  Funct Mater, 2011; 42: 2089
(柳金龙, 沙玉辉, 张芳, 姚勇创, 李继超, 左良. 功能材料, 2011; 42: 2089)
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[7] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. 金属学报, 2020, 56(12): 1667-1680.
[12] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[13] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[14] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[15] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
No Suggested Reading articles found!