Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1611-1616    DOI: 10.3724/SP.J.1037.2013.00207
Current Issue | Archive | Adv Search |
FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER
ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan
Key Laboratory for Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064
Cite this article: 

ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan. FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER. Acta Metall Sin, 2013, 49(12): 1611-1616.

Download:  PDF(1875KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The (AlCrTaTiNi)N and AlCrTaTiNi/(AlCrTaTiNi)N thin films were deposited on Si substrates as copper interconnects diffusion barriers by magnetron sputtering methods. The phase structure, phase composition and thermal stability at high temperature were investigated by XRD, EDS and SEM in this work, respectively. The results indicate that the gap could be observed between Cu and (AlCrTaTiNi)N layers when the samples were annealed at 500℃ for 30 min, and the Cu film fall off at 700℃ under visual conditions. The bonding properties of Cu and (AlCrTaTiNi)N layers can be improved by inserting a AlCrTaTiNi layer. The XRD patterns, SEM cross-sectional micrographs and sheet resistance data show that the AlCrTaTiNi/(AlCrTaTiNi)N bilayers is stable up to 800℃.

Key words:  High-entropy alloy      bilayer diffusion barrier      thermal stability     
Received:  23 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00207     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1611

[1] Chen Y Y, Duval T, Hung U, Yeh J W, Shih H C.  Corros Sci, 2005; 47: 2257

[2] Zhu J M , Fu H M , Zhang H F, Wang A M , Li H , Hu Z Q .  Mater Sci Eng, 2010; A527: 6975
[3] Tang W Y, Chuang M H, Chen H Y, Yeh J W.  Surf Coat Technol, 2010; 204: 3118
[4] Chou Y L, Yeh J W, Shih H C.  Corros Sci, 2010; 52: 2571
[5] Chen Y Y, Duval T, Hung U D,  Corros Sci, 2005; 47: 2679
[6] Yeh J W, Chen S K, Lin S J , Gan J Y, Chin T, Tsau T T, Chang S Y.  Adv Eng Mater,2004; 6: 299
[7] Chang S Y, Chen M K.  Thin Solid Films, 2009; 517: 4961
[8] Tsai M H, Yeh J W, Gan J Y.  Thin Solid Films, 2008; 516: 5527.
[9] Chang S Y, Chen D S . Appl Phys Lett, 2009; 94: 243
[10] Chang S Y, Wang C Y, Li C E, Huang Y C.  NanoSci NanoTechnol Lett, 2011; 3: 289
[11] Chang S Y, Li C E, Huang Y C, Huang Y C.  J Alloys Compd, 2012; 515: 4
[12] Chang S Y, Chen D S.  Mater Chem Phys, 2011; 125: 5
[13] Zhao C R, Du H, Liu M X, Han Z S.  Semicond Technol, 2008; 33: 374
(赵超荣, 杜寰, 刘梦新, 韩郑生. 半导体技术, 2008; 33: 374)
[14] Ogawa E T, Lee K D, Matsuhashi H, Ko K S, Justison P R, Ramamurthi A N,Bierwag A J, Ho P S.  39th Annual International Reliability Physics Symposium Proceedings,Oriando, Florida: IEEE, 2001: 341
[15] Wang L, Cao Z H, Hu K, She Q W, Meng X K.  Mater Chem Phys, 2012; 135: 806
[16] Liu C H, Liu W, Wang Y H, An Z, Song Z X, Xu K W.  Microelectron Eng, 2012; 98: 80
[17] Wang Y S, Lee W H, Wang Y L, Hung C C, Chang S C.  J Phys Chem Solids, 2008; 69: 601
[18] Yang L Y, Zhang D H, Li C Y, Foo P D.  Thin Solid Films, 2004; 462--463: 176
[19] Tsao J C, Liu C P, Wang Y L, Chen K W, Lo K Y.  J Phys Chem Solids, 2008; 69: 561
[20] Traving M, Zienert I, Zschech E, Schindler G, Steinh$\ddot{\rm o$gl W, Engelhardt M.Appl Surf Sci, 2005; 252: 11
[21] Jacquemin J P, Labonne E, Yalicheff C, Royet E, Vannier P, Delsol R,Normandon P.  Microelectron Eng, 2005; 82: 613
[22] Hubner R, Hecker M, Mattern N, Hoffmann V, Wetzig K, Wenger C, Engelmann H J,Wenzel C, Zschech E, Bartha J W.  Thin Solid Films, 2003; 437: 248
[23] Zhang H Q, Slade C G, Antoinette M.  J Mater Res, 2011; 26: 633
[24] Shi C X, Zhong Q P, Li C G.  The Dictionary of Chinese Materials Engineering.Beijing: Chemical Industry Press, 2005: 160
(师昌绪, 钟群鹏, 李成功. 中国材料工程大典. 北京: 化学工业出版社, 2005: 160)
[25] Shen Y L, Guo Y L, Minor C A.  Acta Mater, 2000; 48: 1667
[26] Davis J A, Meindl J D, translated by Luo Z Y, Ye Z C, Lv Y Q, Yu W J.Interconnect Technology and Design for Gigascale Integration.Beijing: China Machine Press, 2010: 128
(Davis J A, Meindl J D~著, 骆祖莹, 叶作昌, 吕勇强, 喻文健 译.吉规模集成电路互联工艺及设计. 北京: 机械工业出版社, 2010: 128)
[27] Song Z X, Ju X H, Xu K W.  Acta Metall Sin, 2002; 38: 723
(宋忠孝, 鞠新华, 徐可为. 金属学报, 2002; 38: 723)
[28] Song Z X, Xu K W, Chen H.  Microelectron Eng, 2004; 71: 28
[29] Ryu C, Kwon K W, Loke A L S, Lee H, Nogami T, Dubin V M, Kavari R A, Ray G W,Wong S S.  IEEE Trans Electron Devices, 1999; 46: 1113
[30] Zheng G F, Fu J H, Li Y T, Du S W, Jiang L W.  Heat Treat Met, 2013; 38: 113
(郑光锋, 付建华, 李永堂, 杜诗文, 蒋立文. 金属热处理, 2013; 38: 113)
[31] Bai X Y, Wang Y, Xu K W.  Rare Met Mater Eng, 2005; 34: 259
(白宣羽, 汪渊, 徐可为. 稀有金属材料与工程, 2005; 34: 259)
[32] Yang Y T.  Microelectron Technol, 2000; 28(1): 37
(杨银堂. 微电子技术, 2000; 28(1): 37 )

[33] Cao Z H, Hu K, Meng X K.  J Appl Phys, 2009; 106: 113513

[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[3] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[4] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[5] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[6] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[7] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[8] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[9] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[10] XU Liujie, ZONG Le, LUO Chunyang, JIAO Zhaolin, WEI Shizhong. Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys[J]. 金属学报, 2022, 58(3): 257-271.
[11] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[12] AN Zibing, MAO Shengcheng, ZHANG Ze, HAN Xiaodong. Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy[J]. 金属学报, 2022, 58(11): 1441-1458.
[13] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[14] CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings[J]. 金属学报, 2022, 58(1): 17-27.
[15] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
No Suggested Reading articles found!