Please wait a minute...
Acta Metall Sin    DOI: 10.3724/SP.J.1037.2013.00207
Current Issue | Archive | Adv Search |
FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER
ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan
Key Laboratory for Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064
Download:  PDF(1875KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The (AlCrTaTiNi)N and AlCrTaTiNi/(AlCrTaTiNi)N thin films were deposited on Si substrates as copper interconnects diffusion barriers by magnetron sputtering methods. The phase structure, phase composition and thermal stability at high temperature were investigated by XRD, EDS and SEM in this work, respectively. The results indicate that the gap could be observed between Cu and (AlCrTaTiNi)N layers when the samples were annealed at 500℃ for 30 min, and the Cu film fall off at 700℃ under visual conditions. The bonding properties of Cu and (AlCrTaTiNi)N layers can be improved by inserting a AlCrTaTiNi layer. The XRD patterns, SEM cross-sectional micrographs and sheet resistance data show that the AlCrTaTiNi/(AlCrTaTiNi)N bilayers is stable up to 800℃.

Key words:  High-entropy alloy      bilayer diffusion barrier      thermal stability     
Received:  23 April 2013     

Cite this article: 

ZHANG Lidong, WANG Fei, CHEN Shunli, WANG Yuan. FABRICATION AND THERMAL STABILITY OF AlCrTaTiNi/(AlCrTaTiNi)N BILAYER DIFFUSION BARRIER. Acta Metall Sin, 2013, 49(12): 1611-1616.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00207     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1611

[1] Chen Y Y, Duval T, Hung U, Yeh J W, Shih H C.  Corros Sci, 2005; 47: 2257

[2] Zhu J M , Fu H M , Zhang H F, Wang A M , Li H , Hu Z Q .  Mater Sci Eng, 2010; A527: 6975
[3] Tang W Y, Chuang M H, Chen H Y, Yeh J W.  Surf Coat Technol, 2010; 204: 3118
[4] Chou Y L, Yeh J W, Shih H C.  Corros Sci, 2010; 52: 2571
[5] Chen Y Y, Duval T, Hung U D,  Corros Sci, 2005; 47: 2679
[6] Yeh J W, Chen S K, Lin S J , Gan J Y, Chin T, Tsau T T, Chang S Y.  Adv Eng Mater,2004; 6: 299
[7] Chang S Y, Chen M K.  Thin Solid Films, 2009; 517: 4961
[8] Tsai M H, Yeh J W, Gan J Y.  Thin Solid Films, 2008; 516: 5527.
[9] Chang S Y, Chen D S . Appl Phys Lett, 2009; 94: 243
[10] Chang S Y, Wang C Y, Li C E, Huang Y C.  NanoSci NanoTechnol Lett, 2011; 3: 289
[11] Chang S Y, Li C E, Huang Y C, Huang Y C.  J Alloys Compd, 2012; 515: 4
[12] Chang S Y, Chen D S.  Mater Chem Phys, 2011; 125: 5
[13] Zhao C R, Du H, Liu M X, Han Z S.  Semicond Technol, 2008; 33: 374
(赵超荣, 杜寰, 刘梦新, 韩郑生. 半导体技术, 2008; 33: 374)
[14] Ogawa E T, Lee K D, Matsuhashi H, Ko K S, Justison P R, Ramamurthi A N,Bierwag A J, Ho P S.  39th Annual International Reliability Physics Symposium Proceedings,Oriando, Florida: IEEE, 2001: 341
[15] Wang L, Cao Z H, Hu K, She Q W, Meng X K.  Mater Chem Phys, 2012; 135: 806
[16] Liu C H, Liu W, Wang Y H, An Z, Song Z X, Xu K W.  Microelectron Eng, 2012; 98: 80
[17] Wang Y S, Lee W H, Wang Y L, Hung C C, Chang S C.  J Phys Chem Solids, 2008; 69: 601
[18] Yang L Y, Zhang D H, Li C Y, Foo P D.  Thin Solid Films, 2004; 462--463: 176
[19] Tsao J C, Liu C P, Wang Y L, Chen K W, Lo K Y.  J Phys Chem Solids, 2008; 69: 561
[20] Traving M, Zienert I, Zschech E, Schindler G, Steinh$\ddot{\rm o$gl W, Engelhardt M.Appl Surf Sci, 2005; 252: 11
[21] Jacquemin J P, Labonne E, Yalicheff C, Royet E, Vannier P, Delsol R,Normandon P.  Microelectron Eng, 2005; 82: 613
[22] Hubner R, Hecker M, Mattern N, Hoffmann V, Wetzig K, Wenger C, Engelmann H J,Wenzel C, Zschech E, Bartha J W.  Thin Solid Films, 2003; 437: 248
[23] Zhang H Q, Slade C G, Antoinette M.  J Mater Res, 2011; 26: 633
[24] Shi C X, Zhong Q P, Li C G.  The Dictionary of Chinese Materials Engineering.Beijing: Chemical Industry Press, 2005: 160
(师昌绪, 钟群鹏, 李成功. 中国材料工程大典. 北京: 化学工业出版社, 2005: 160)
[25] Shen Y L, Guo Y L, Minor C A.  Acta Mater, 2000; 48: 1667
[26] Davis J A, Meindl J D, translated by Luo Z Y, Ye Z C, Lv Y Q, Yu W J.Interconnect Technology and Design for Gigascale Integration.Beijing: China Machine Press, 2010: 128
(Davis J A, Meindl J D~著, 骆祖莹, 叶作昌, 吕勇强, 喻文健 译.吉规模集成电路互联工艺及设计. 北京: 机械工业出版社, 2010: 128)
[27] Song Z X, Ju X H, Xu K W.  Acta Metall Sin, 2002; 38: 723
(宋忠孝, 鞠新华, 徐可为. 金属学报, 2002; 38: 723)
[28] Song Z X, Xu K W, Chen H.  Microelectron Eng, 2004; 71: 28
[29] Ryu C, Kwon K W, Loke A L S, Lee H, Nogami T, Dubin V M, Kavari R A, Ray G W,Wong S S.  IEEE Trans Electron Devices, 1999; 46: 1113
[30] Zheng G F, Fu J H, Li Y T, Du S W, Jiang L W.  Heat Treat Met, 2013; 38: 113
(郑光锋, 付建华, 李永堂, 杜诗文, 蒋立文. 金属热处理, 2013; 38: 113)
[31] Bai X Y, Wang Y, Xu K W.  Rare Met Mater Eng, 2005; 34: 259
(白宣羽, 汪渊, 徐可为. 稀有金属材料与工程, 2005; 34: 259)
[32] Yang Y T.  Microelectron Technol, 2000; 28(1): 37
(杨银堂. 微电子技术, 2000; 28(1): 37 )

[33] Cao Z H, Hu K, Meng X K.  J Appl Phys, 2009; 106: 113513

[1] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[2] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[3] Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution[J]. 金属学报, 2018, 54(6): 905-910.
[4] Zhaoping LU, Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG. Deformation Behavior and Toughening of High-Entropy Alloys[J]. 金属学报, 2018, 54(11): 1553-1566.
[5] Jianxiong ZOU,Bo LIU,Liwei LIN,Ding REN,Guohua JIAO,Yuanfu LU,Kewei XU. Microstructure and Thermal Stability of MoC DopedRu-Based Alloy Films as Seedless Diffusion Barrier[J]. 金属学报, 2017, 53(1): 31-37.
[6] Chenliang WU,Song ZHANG,Chunhua ZHANG,Meng GUAN,Junzhe TAN. PHASE EVOLUTION OF FeCoCrAlCuNiMox COATINGS BY LASER HIGH-ENTROPY ALLOYING ON STAINLESS STEELS[J]. 金属学报, 2016, 52(7): 797-803.
[7] Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS[J]. 金属学报, 2016, 52(6): 761-768.
[8] YANG Bin, LI Xin, LUO Wendong, LI Yuxiang. EFFECT OF MINOR Sn AND Nb ADDITIONS ON THE THERMAL STABILITY AND COMPRESSIVE PLASTICITY OF Zr-Cu-Fe-Al BULK METALLIC GLASS[J]. 金属学报, 2015, 51(4): 465-472.
[9] LUO Xinmin, WANG Xiang, CHEN Kangmin, LU Jinzhong, WANG Lan, ZHANG Yongkang. SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING[J]. 金属学报, 2015, 51(1): 57-66.
[10] LIU Wenbo, ZHANG Chi, YANG Zhigang, XIA Zhixin, GAO Guhui, WENG Yuqing. EFFECT OF SURFACE NANOCRYSTALLIZATION ON MICROSTRUCTURE AND THERMAL STABILITY OF REDUCED ACTIVATION STEEL[J]. 金属学报, 2013, 49(6): 707-716.
[11] FANG Lu,DING Xianfei, ZHANG Laiqi, HAO Guojian, LIN Junpin. MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb-TiAl ALLOY AFTER LONG-TERM THERMAL CYCLING[J]. 金属学报, 2013, 49(11): 1416-1422.
[12] ZHANG Sufang, YANG Xiao, ZHANG Yong. PROCESSING AND PROPERTIES OF Al3CrCuFeNi2 SINGLE CRYSTAL HIGH--ENTROPY ALLOY[J]. 金属学报, 2013, 49(11): 1473-1480.
[13] ZHANG Yanpo, REN Ding, LIN Liwei,YANG Bin, WANG Shanling,LIU Bo1), XU Kewei. CONTROLLED REACTION ON INTERFACE OF Cu/Cu(Ge, Zr)/SiO2/Si MULTILAYER FILM AND ITS THERMAL STABILITY[J]. 金属学报, 2013, 49(10): 1264-1268.
[14] GUO Weiwei, QI Chengjun, LI Xiaowu. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN A DOUBLE-SLIPORIENTED Cu SINGLE CRYSTAL[J]. 金属学报, 2013, 49(1): 107-114.
[15] ZHOU Xiaowei SHEN Yifu GU Dongdong. MICROSTRUCTURE AND HIGH TEMPERATURE OXIDATION RESISTANCE OF NANOCRYSTALLINE Ni–CeO2 COMPOSITE COATINGS DEPOSITED BY DOUBLE–PULSED ELECTRO DEPOSITION[J]. 金属学报, 2012, 48(8): 957-964.
No Suggested Reading articles found!