Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 209-216    DOI: 10.11900/0412.1961.2015.00219
Orginal Article Current Issue | Archive | Adv Search |
EFFECT OF DISSOLVED OXYGEN IN STEAM ON THE CORROSION BEHAVIORS OF ZIRCONIUM ALLOYS
Tianguo WEI1,Jiankang LIN2,Chongsheng LONG1(),Hongsheng CHEN1
1 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
2 Fujian Fuqing Nuclear Power Co. Ltd., Fuqing 350318, China
Cite this article: 

Tianguo WEI,Jiankang LIN,Chongsheng LONG,Hongsheng CHEN. EFFECT OF DISSOLVED OXYGEN IN STEAM ON THE CORROSION BEHAVIORS OF ZIRCONIUM ALLOYS. Acta Metall Sin, 2016, 52(2): 209-216.

Download:  HTML  PDF(5524KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Advanced boiling water reactors (ABWRS) show optimistic application prospect in the future. However, in these reactors, influence of dissolved oxygen (DO) on the corrosion rate of zirconium fuel claddings should be seriously considered. In this work, the effect of the dissolved oxygen (DO) on the corrosion behaviors of Zr-4, N18 (Zr-1.0Sn-0.3Nb -0.3Fe-0.1Cr) and N36 (Zr-1.0Sn-1.0Nb-0.3Fe) alloys in 400 ℃ and 10.3 MPa steam was investigated. A recirculation loop was used to control the DO level at about 0.1×10-6 and 1.0×10-6, respectively. The results showed that, under the two DO level conditions, N18 had almost the same weight gain as Zr-4 after exposure for 90 d, and N36 had the highest weight gain. In the initial period of the corrosion test, the three alloys had lower weight gain under higher DO level condition. With the increase of exposure time, the weight gain under 1.0×10-6 DO level exceeded gradually the weight gain under 0.1×10-6 level for each alloy, and the time needed for exceeding was significantly shorter for the alloy with higher Nb content.

Key words:  Zr alloy      corrosion behavior      recirculation loop      dissolved oxygen     
Received:  14 April 2015     
Fund: Supported by National Natural Science Foundation of China (No.51171175)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00219     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/209

Alloy Sn Nb Fe Cr O Zr
Zr-4 1.30~1.50 - 0.18~0.24 0.09~0.12 0.09~0.14 Bal.
N18 0.80~1.20 0.20~0.40 0.30~0.40 0.07~0.15 0.08~0.16 Bal.
N36 0.90~1.10 0.90~1.10 0.20~0.40 - 0.08~0.16 Bal.
Table 1  Chemical compositions of Zr alloys (mass fraction / %)
Fig.1  TEM images of N18 (a) and N36 (b) alloys
Position Fe Cr Nb Zr
P1 19.73 5.49 4.29 70.49
P2 20.83 6.02 2.49 70.65
P3 17.71 4.06 16.73 61.49
P4 13.68 0.24 26.25 59.84
P5 9.85 0.23 20.07 69.85
P6 9.87 0.17 22.64 67.31
Table 2  Compositions of second phase particles in N18 and N36 alloys in Fig.1 (mass fraction / %)
Fig.2  Curves of weight gain vs exposure time for Zr-4 (a), N18 (b), and N36 (c) alloys in 400 ℃ and 10.3 MPa steam with 0.1×10-6 and 1.0×10-6 dissolved oxygen (DO)
Fig.3  Surface morphologies of the oxide films formed on Zr-4 (a) and N18 (b) alloys (90 d, 0.1×10-6 DO)
Fig.4  Morphologies of a mature nodule (a) and initial nodules (b, c) on the oxide surface of Zr-4 (a, b) and N18 (c) alloys (90 d, 1.0×10-6 DO) (Arrows show the nodule forming regions)
Fig.5  Cross-sectional morphologies of the oxide layers formed on Zr-4 (a), N18 (b), N36 (c) alloys, and the magnified image of the framed part in Fig.5c (d) (90 d, 1.0×10-6 DO, arrows show the cracks)
Fig.6  Cracks at the surrounding of the second phase particles (SPPs) in the oxide film of Zr-4 (a) and N18 (b) alloys (60 d, 1.0×10-6 DO)
Fig.7  Morphology of the oxide formed on metallic Nb after 2 d exposure under 0.1×10-6 DO
Fig.8  XRD spectrum of the oxide formed on metallic Nb
[1] Cox B.J Nucl Mater, 2005; 336: 331
[2] Zhou B X, Yao M Y, Li Z K, Wang X M, Zhou J, Long C S, Liu Q, Luan B F.J Mater Sci Technol, 2012; 28: 606
[3] Bojinov M, Karastoyanov V, Kinnunen P, Saario T.Corros Sci, 2010; 52: 54
[4] Kumar M K, Aggarwal S, Kain V, Saario T, Bojinov M.Nucl Eng Des, 2010; 240: 985
[5] Cox B, Garzarolli F, Rudling P.Corrosion of Zr-Nb Alloys, Zirat-9 Specialtopics Report, Advanced Nuclear Technology International, Ekbaken 33, SE-735, 35, SURAHAMMAR, Sweden, September, 2004
[6] Kumar M K, Aggarwal S, Beniwal D, Dey A K, Singh H, Kain V.Mater Corros, 2014; 65: 244
[7] Allen T R, Konings R J M, Motta A T.Compr Nucl Mater, 2012; 5: 49
[8] Yan Y H, Gao Z Y.Nucl Power Eng, 1997; 18(1): 12
[8] (严育华, 高祖瑛. 核动力工程, 1997; 18(1): 12)
[9] Liu X R, Chen Z Q, Hou Z S.Shangdong Elec Power, 1996; (5): 46
[9] (刘信荣, 陈志奇, 侯忠松. 山东电力技术, 1996; (5): 46)
[10] Zhang H X.PhD Dissertation, Xi'an Jiaotong University, 2009
[10] (章海霞. 西安交通大学博士学位论文, 2009)
[11] Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q.Shanghai Met, 2008; 30(6): 1
[11] (姚美意, 周邦新, 李强, 夏爽, 刘文庆. 上海金属, 2008; 30(6): 1)
[12] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y.Acta Metall Sin, 2011; 47: 865
[12] (姚美意, 李士炉, 张欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)
[13] Zhang H X, Fruchart D, Hlil E K, Ortega L, Li Z K, Zhang J J, Sun J, Zhou L.J Nucl Mater, 2010; 396: 65
[14] Ni N, Lozano-Perez S, Sykes J, Grovenor C.Ultramicroscopy, 2011; 111: 123
[15] Ni N, Hudson D, Wei J, Wang P, Lozano-Perez S, Smith G D W, Sykes J M, Yardley S S, Moore K L, Lyon S, Cottis R, Preuss M, Grovenor C R M.Acta Mater, 2012; 60: 7132
[16] Li Z K, Zhou L, Li P Z, Zhang J J, Xue X Y, Song Q Z.Rare Met Mater Eng, 1999; 28: 380
[16] (李中奎, 周廉, 李佩志, 张建军, 薛祥义, 宋启忠. 稀有金属材料与工程, 1999; 28: 380)
[17] Zhao W J, Miao Z, Jiang Y R, Jiang H M, Zhou B X.Rare Met, 2000; 24: 150
[17] (赵文金, 苗志, 蒋有荣, 蒋宏曼, 周邦新. 稀有金属, 2000; 24: 150)
[18] Parise M, Sicardy O, Cailletaud G.J Nucl Mater, 1998; 256: 35
[19] Tejland P, Andren H O.J Nucl Mater, 2012; 430: 64
[20] Baek J H, Jeong Y H, Kim I S.J Nucl Mater, 2000; 280: 235
[21] Jeong Y H, Kim H G, Kim T H.J Nucl Mater, 2003; 317: 1
[22] Kim H G, Park J Y, Jeong Y H.J Nucl Mater, 2005; 347: 140
[23] Proff C, Abolhassania S, Lemaignan C.J Nucl Mater, 2013; 432: 222
[1] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
[2] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[3] LIN Yan, SI Cheng, XU Jingyu, LIU Ze, ZHANG Cheng, LIU Lin. Heterogeneous Structure and Mechanical Properties of Strong and Tough Al Alloys Prepared by Selective Laser Melting[J]. 金属学报, 2022, 58(11): 1509-1518.
[4] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[5] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[6] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[7] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[8] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[9] BAI Yang, WANG Zhenhua, LI Xiangbo, LI Yan. Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology[J]. 金属学报, 2019, 55(10): 1338-1348.
[10] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[11] Suqiang ZHANG,Hongyun ZHAO,Fengyuan SHU,Guodong WANG,Wenxiong HE. Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution[J]. 金属学报, 2017, 53(7): 808-816.
[12] Ye ZHOU,Pingli MAO,Zhi WANG,Zheng LIU,Feng WANG. Investigations on Hot Tearing Behavior of Mg-7Zn-xCu-0.6Zr Alloys[J]. 金属学报, 2017, 53(7): 851-860.
[13] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[14] Yibin REN, Jun LI, Qingchuan WANG, Ke YANG. A Review: Research on MR-Compatible Alloys in MRI[J]. 金属学报, 2017, 53(10): 1323-1330.
[15] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
No Suggested Reading articles found!