Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (3): 354-360    DOI: 10.3724/SP.J.1037.2010.00440
论文 Current Issue | Archive | Adv Search |
EFFCTS OF pH AND Cl CONCENTRATION ON THE CORROSION BEHAVIOR OF COPPER IN BORIC ACID BUFFER SOLUTION
WANG Changgang, DONG Junhua, KE Wei, CHEN Nan
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences,
Shenyang 110016
Cite this article: 

WANG Changgang DONG Junhua KE Wei CHEN Nan. EFFCTS OF pH AND Cl CONCENTRATION ON THE CORROSION BEHAVIOR OF COPPER IN BORIC ACID BUFFER SOLUTION. Acta Metall Sin, 2011, 47(3): 354-360.

Download:  PDF(1038KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The strategy for disposal of high–level radioactive waste in china is to enclose the spent nuclear fuel in sealed metal canisters which are embedded in bentonite clay hundreds meters deep in the bed–rock. The choice of container material depends largely on the redox conditions and the aqueous environment of the repository. One of the choices for the fabrication of waste canisters is copper, for it is thermodynamically stable under the saline, anoxic conditions over the large majority of the container lifetime. For this advantage, some other countries (Canada, Sweden) have selected copper as the material of nuclear waste container. However, in the early aerobic phase of the geological disposal the corrosion of copper could take place, and the corrosion behavior of copper would be influenced by the complex chemical conditions of groundwater markedly. Regularly, in atmosphere environment the semiconductor passive film which is constructed by Cu2O would generate on the surface of copper. On the one hand, the Cu2O film could protect copper from corrosion. On the other hand, the formation of Cu2O film is necessary to maintain the propagation of crack during the stress corrosion cracking. Therefore, the study of the effect of water chemistry conditions on the stability of Cu2O passive film makes great sense for the general corrosion and stress corrosion cracking of copper. For copper and copper alloy, Cl is a highly aggressive ion. Lots of cases of failure and corrosion behavior of copper and copper alloy in Cl environment have been studied. The immersion of Cl would affect the semconductor properties of Cu2O, therefore, we focused on the effect of pH and Cl concentration on the corrosion behavior and semiconductor properties of Cu2O in this paper. The polarization behavior of Cu electrodes and the stability of passive film Cu2O in boric acid buffer solution have been investigated respectively by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and semiconductor capacitance method (Mott–Schottky method). The results showed that the destruction and dissolutioof the passive film Cu2O happened in the conditions of low pH and high Cl concentration. The semconductor character of passive film changed from p–type into n–type in the solution with high Cl concentration, so that Cl is more likely to enter the passivfilm and take complex reaction wth Cu+, which could destroy thpassive film and accelerate corrosion. The passive film Cu2O is more steady in the condition of high pH and low Cl concentration.
Key words:  geological disposal of high level radioactive waste      Cu2O passie film      tability      electrochemical impedance spectroscopy (EIS)      Mott–Schottky method     
Received:  31 August 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.51071160)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00440     OR     https://www.ams.org.cn/EN/Y2011/V47/I3/354

[1] Xu Q J, Wang W, Zhou G D. J Mater Prot, 2006; 39(7): 51

(徐群杰, 王伟, 周国定. 材料保护, 2006; 39(7): 51)

[2] Zhu X L, Lin L Y, Lei T Q. Acta Metall Sin, 1997; 33: 1256

(朱小龙, 林乐耘, 雷廷权. 金属学报, 1997; 33: 1256)

[3] Xu Q J, Zhu L J, Qi H, Cao W M, Zhou G D. Acta Metall Sin, 2008; 44: 1360

(徐群杰, 朱律均, 齐航, 曹为民, 周国定. 金属学报, 2008; 44: 1360)

[4] Smith J M, Wren J C, Dziemkowski M O, Shoesmith D W. J Electrochem Soc, 2007; 154: 431

[5] Ding J, Lin H C, Cao C N. Corros Sci Prot Technol, 2002; 14: 67

(丁杰, 林海潮, 曹楚南. 腐蚀科学与防护技术, 2002; 14: 67)

[6] Trachli B, Keddam M, Takenouti H, Srhiri A. Corros Sci, 2002; 44: 997

[7] Cicileo G, Rosales B, Varela F, Vilche J. Corros Sci, 1999; 41: 1359

[8] Valcarce M, De Sanchez S, Vazquez M. J Mater Sci, 2006; 41: 1999

[9] Srivastava A, Balasubramaniam R. Mater Charact, 2005; 55: 127

[10] Palit A, Pehkonen S. Corros Sci, 2000; 42: 1801

[11] Brizuela F, Procaccini R, Cere S, Vazquez M. J Appl Electrochem , 2006; 36: 583

[12] Bech–Nielsen G, Jaskula M, Chorkendorff, Larsen J. Electrochim Acta, 2002; 47: 4279

[13] Deslouis C, Tribollet B, Mengoli G, Musiani M M. J Appl Electrochem, 1988; 18: 374

[14] Deslouis C, Tribollet B, Mengoli G, Musiani M M. J Appl Electrochem, 1988; 18: 384

[15] Diard J P, Le Canut J M, Le Gorrec B, Montella C. Electrochim Acta, 1998; 43: 2485

[16] Li D G, Feng Y R, Bai Z Q, Zhu J W, Zheng M S. Electrochim Acta, 2007; 52: 7877

[17] Shinji F, Hiroaki T. Corros Sci, 2007; 49: 195
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[4] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[5] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[6] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[7] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[8] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[9] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[10] MAO Fei, LU Hao, TANG Fawei, GUO Kai, LIU Dong, SONG Xiaoyan. First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys[J]. 金属学报, 2021, 57(7): 948-958.
[11] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[12] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[13] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
[14] PENG Yanyan, YU Liming, LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. 金属学报, 2020, 56(8): 1075-1083.
[15] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
No Suggested Reading articles found!