Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (7): 808-816    DOI: 10.11900/0412.1961.2016.00575
Orginal Article Current Issue | Archive | Adv Search |
Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution
Suqiang ZHANG1,2,Hongyun ZHAO1,2,Fengyuan SHU1,2(),Guodong WANG2,3,Wenxiong HE1,2
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
3 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(1964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As the main corrosion form of coal- or heavy oil-fired boilers, dew point corrosion occurs when corrosive gases (SO3, HCl, NO2, et al) are cooled and converted to condensed acids. The condensed acids (H2SO4, HCl and HNO3) are much corrosive to steel, causing corrosion damage to plant materials. The service temperature is designed lower and lower to improve energy efficiency recently, which makes dew point corrosion more and more serious. Q315NS steel produced by appropriate alloy design is much suitable for those parts vulnerable to dew point corrosion in power and petrochemical industry due to its excellent corrosion resistance in H2SO4 solution. As an efficient and low-cost process, welding is an essential process in the utilization of Q315NS. The corrosion mechanism of the heat affected zone is much complex due to the presence of microstructure gradients, which is largely determined by the welding thermal cycle. However, there is little research elucidating the effect of welding thermal cycle on corrosion behavior of Q315NS steel in H2SO4 solution. In this work, the microstructure evolution and corrosion behaviour in the 50%H2SO4 (mass fraction) solution of welding heat affected zones of Q315NS was investigated by comparison with base metal using welding thermal simulation technique, scanning electron microscope and electrochemical measurements. The results show that the microstructures of ferrite and pearlite are observed in base metal, fine-grained region and incomplete recrystallization region, while coarse-grained region consists of granular bainite. All the equivalent circuits of Q315NS with or without welding thermal cycle contain a resistor of corrosion product and a capacitor of electric double layer, and all specimens have passivation behavior. The base metal and the incomplete recrystallization region have the lowest corrosion current density and the largest charge-transfer resistance, which means the best corrosion resistance, while the coarse-grained region has the highest corrosion current density and the least charge-transfer resistance. Rod-like shaped corrosion product was formed by deposition on the surface of the coarse-grained region specimen while a porous-structured corrosion product was formed on the surface of other specimens.

Key words:  Q315NS steel      welding thermal cycle      sulphuric acid solution      corrosion behavior      electrochemistry     
Received:  27 December 2016     
Fund: Supported by Harbin Institute of Technology Innovation Fund (No.IDGA18102104)

Cite this article: 

Suqiang ZHANG,Hongyun ZHAO,Fengyuan SHU,Guodong WANG,Wenxiong HE. Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution. Acta Metall Sin, 2017, 53(7): 808-816.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00575     OR     https://www.ams.org.cn/EN/Y2017/V53/I7/808

Fig.1  SEM images of BM and HAZ of Q315NS steel (BM—base metal, HAZ—heat affected zone, CGHAZ—coarse-grained heat affected zone, FGHAZ—fine-grained heat affected zone, ICHAZ—incomplete recrystallization heat affected zone, GB—granular bainite, F—ferrite, P—pearlite)

(a) CGHAZ (b) FGHAZ (c) ICHAZ (d) BM

Fig.2  The microhardnesses and grain sizes of BM and HAZ
Fig.3  Tafel polarization curves for specimens immersed in 50% H2SO4 solution
Specimen Ecorr icorr -βc βa Epp Eb ip Corrosion rate
mV μAcm-2 mV mV mV mV μAcm-2 mma-1
CGHAZ -321.3 316.9 98.7 23.6 -159 403 8.71 7.390
FGHAZ -333.9 148.4 91.7 25.3 -165 409 6.87 3.927
ICHAZ -358.8 124.3 89.1 22.4 -162 420 6.60 3.419
BM -371.9 121.2 91.6 22.2 -184 425 5.19 3.313
Table 1  Electrochemical parameters of Tafel polarization curves for specimens immersed in 50%H2SO4 solution
Fig.4  Nyquist plots for specimens immersed in 50%H2SO4 solution
Fig.5  Equivalent circuit of EIS plots (Rsol—solution/electrolyte resistance, Cdl—capacitance of the double electrode layer, Rct—charge transfer resistance)
Specimen Rct / (Ωcm2) Cdl / (μFcm-2)
CGHAZ 29.314 0.438
FGHAZ 61.228 0.554
ICHAZ 75.379 0.421
BM 76.421 0.579
Table 2  Electrochemical parameters of EIS for the specimens immersed in 50%H2SO4 solution
Fig.6  SEM images of corrosion products formed on the surface of electrodes immersed in 50%H2SO4 solution for 72 h

(a) BM (b) CGHAZ (c) FGHAZ (d) ICHAZ

Point O Si S Sb Mn Fe Cu
I 28.72 10.48 14.92 1.30 - 39.09 5.50
II 25.74 5.80 15.10 1.28 0.67 43.70 7.72
Table 3  EDS analyses of the points I and II of the corrosion products formed on the surface in Fig.6(mass fraction / %)
Fig.7  SEM images of corrosion products formed on the surface of BM in 50%H2SO4 solution after different corrosion times of 1 h (a), 4 h (b), 12 h (c) and 72 h (d)
Fig.8  SEM images of corrosion products formed on the surface of CGHAZ in 50%H2SO4 solution after different corrosion times of 1 h (a), 4 h (b), 12 h (c) and 72 h (d)
Fig.9  Schematic of the corrosion mechanism of BM (a) and CGHAZ (b) in 50%H2SO4 solution (M/A—martensite-austenite)
[1] Liu H J.Welding Metallurgy and Welding Properties [M]. Beijing: China Machine Press, 2007: 105
[1] (刘会杰. 焊接冶金与焊接性 [M]. 北京: 机械工业出版社, 2007: 105)
[2] Du Z Y.Material Connection Principle [M]. Beijing: Mechanical Industry Press, 2011: 103
[2] (杜则裕. 材料连接原理 [M]. 北京: 机械工业出版社, 2011: 103)
[3] Feng X L, Wang L, Liu Y.Study on microstructure and dynamic fracture behavior of Q460 steel welding joints[J]. Acta Metall. Sin., 2016, 52: 787
[3] (冯祥利, 王磊, 刘杨. Q460钢焊接接头组织及动态断裂行为的研究[J]. 金属学报, 2016, 52: 787)
[4] Xia D X, Shang C J, Sun W H, et al.Microstructure and properties of high heat input welding HAZ of high strengthen steel[J]. Trans. China Weld. Inst., 2011, 32(4): 83
[4] (夏佃秀, 尚成嘉, 孙卫华等. 低合金高强钢大热输入焊接热影响区组织性能[J]. 焊接学报, 2011, 32(4): 83)
[5] Bi Z Y, Yang J, Liu H Z, et al.Investigation on the welding process and microstructure and mechanical property of butt joints of TA1/X65 clad plates[J]. Acta Metall. Sin., 2016, 52: 1017
[5] (毕宗岳, 杨军, 刘海璋等. TA1/X65复合板焊接工艺及焊缝组织和性能研究[J]. 金属学报, 2016, 52: 1017)
[6] Luk-Cyr J, El-Bawab R, Lanteigne J, et al.Mechanical properties of 75% Ar/25% CO2 flux-cored arc welded E309L austenitic stainless steel[J]. Mater. Sci. Eng., 2016, A678: 197
[7] Li X D, Shang C J, Han C C, et al.Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel[J]. Acta Metall. Sin., 2016, 52: 1025
[7] (李学达, 尚成嘉, 韩昌柴等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响[J]. 金属学报, 2016, 52: 1025)
[8] Wen T, Liu S Y, Chen S, et al.Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 397
[9] Wei J S, Qi Y C, Tian Z L, et al.Corrosion behavior of welded joints for cargo oil tanks of crude oil carrier[J]. J. Iron Steel Res. Int., 2016, 23: 955
[10] Ming H L, Zhang Z M, Xiu P Y, et al.Microstructure, residual strain and stress corrosion cracking behavior in 316L heat-affected zone[J]. Acta Metall. Sin.(Engl. Lett.), 2016, 26: 848
[11] Razavi R S.Laser beam welding of waspaloy: Characterization and corrosion behavior evaluation[J]. Opt. Laser Technol., 2016, 82: 113
[12] Dong L J, Peng Q J, Han E H, et al.Stress corrosion cracking in the heat affected zone of a stainless steel 308L-316L weld joint in primary water[J]. Corros. Sci., 2016, 107: 172
[13] Zhu J Y, Xu L N, Feng Z C, et al.Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel[J]. Corros. Sci., 2016, 111: 391
[14] Verma J, Taiwade R V.Dissimilar welding behavior of 22% Cr series stainless steel with 316L and its corrosion resistance in modified aggressive environment[J]. J. Manuf. Process., 2016, 14: 1
[15] Zhang G A, Cheng Y F.Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution[J]. Electrochim. Acta, 2009, 55: 316
[16] Zhang G A, Cheng Y F.Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution[J]. Corros. Sci., 2009, 51: 1714
[17] Wang L W, Du C W, Liu Z Y, et al.SVET characterization of localized corrosion of welded X70 pipeline steel in acid solution[J]. Corros. Prot., 2012, 33: 935
[17] (王力伟, 杜翠薇, 刘智勇等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究[J]. 腐蚀与防护, 2012, 33: 935)
[18] Tan W, Xu B S, Han W Z, et al.Haz corrosion of 22SiMn2TiB ultra-strength steel weldment in 3.5%NaCl solution[J]. Acta Metall. Sin., 2004, 40: 197
[18] (谭伟, 徐滨士, 韩文政等. 22SiMn2TiB超高强度钢焊接热影响区抗Cl-腐蚀性能[J]. 金属学报, 2004, 40: 197)
[19] Guo Y J, Sun T Y, Hu J C, et al.Microstructure evolution and pitting corrosion resistance of the Gleeble-simulated heat-affected zone of a newly developed lean duplex stainless steel 2002[J]. J. Alloys Compd., 2016, 658: 1031
[20] Andrews K W.Empirical formulae for the calculation of some transformation temperatures[J]. J. Iron Steel Inst., 1965, 203: 721
[21] Yin H, Li J X, Su Y J, et al.Current situation and development of maraging steel[J]. J. Iron Steel Res., 2014, 26(3): 1
[21] (尹航, 李金许, 宿彦京 等. 马氏体时效钢的研究现状与发展 [J]. 钢铁研究学报, 2014, 26(3): 1)
[22] Chen W Y, Zhou J, Hu M.Electrochemical corrosion behavior of ultrafine grained stainless steel/TiC composite materials[J]. Rare Met. Mater. Eng., 2013, 42: 2068
[22] (陈文怡, 周建, 胡明. 超细晶不锈钢/TiC复合材料的电化学腐蚀行为[J]. 稀有金属材料与工程, 2013, 42: 2068)
[23] Sun Z M, Wang B, Chen J F.Corrosion behavior of metal materials in acetic acid medium[J]. Corros. Prot., 1998, 19: 55
[23] (孙占梅, 王彪, 陈金富. 金属材料在醋酸中的腐蚀行为研究[J]. 腐蚀与防护, 1998, 19: 55)
[24] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 64
[24] (曹楚南. 腐蚀电化学原理 [M]. 第三版, 北京: 化学工业出版社, 2008: 64)
[25] Zhang Q B, Hua Y X.Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid[J]. Electrochim. Acta, 2009, 54: 1881
[26] Lebrini M, Lagrenée M, Traisnel M, et al.Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2, 5-bis(n-thienyl)-1, 3, 4-thiadiazoles: electrochemical, X-ray photoelectron spectroscopy and theoretical studies[J]. Appl. Surf. Sci., 2007, 253: 9267
[27] Naderi E, Ehteshamzadeh M, Jafari A H, et al.Effect of carbon steel microstructure and molecular structure of two new Schiff base compounds on inhibition performance in 1 M HCl solution by DC, SEM and XRD studies[J]. Mater. Chem. Phys., 2010, 120: 134
[28] Zhao W, Zou Y, Matsuda K, et al.Corrosion behavior of reheated CGHAZ of X80 pipeline steel in H2S-containing environments[J]. Mater. Des., 2016, 99: 44
[29] Al-Mansour M, Alfantazi A M, El-Boujdaini M.Sulfide stress cracking resistance of API-X100 high strength low alloy steel[J]. Mater. Des., 2009, 30: 4088
[30] Wang P, Li J P, Ma Q.Effects of gadolinium on the microstructure and corrosion resistance properties of ZK60 magnesium alloy[J]. Rare Met. Mater. Eng., 2008, 37: 1056
[30] (王萍, 李建平, 马群. Gd对ZK60铸造镁合金组织和耐蚀性能的影响[J]. 稀有金属材料与工程, 2008, 37: 1056)
[31] Kou J R, Dong R, Liu H T, et al.Corrosion failure causes of super 13Cr completion tubing strings[J]. Corros. Prot., 2015, 36: 898
[31] (寇菊荣, 董仁, 刘洪涛等. 超级13Cr完井管柱的腐蚀失效原因[J]. 腐蚀与防护, 2015, 36: 898)
[32] Ye X X, Zhou C, Zhang C.Corrosion performance of a new low alloy steel Cu-Sb-Mo for resisting dew-point corrosion induced by sulfuric acid and hydrochloric acid[J]. Corros. Sci. Prot. Technol., 2015, 27: 135
[32] (叶先祥, 周成, 张聪. 新型耐硫酸盐酸露点腐蚀钢的性能研究[J]. 腐蚀科学与防护技术, 2015, 27: 135)
[33] Chen X, Li X G, Du C W, et al.Effects of solution environments on corrosion behaviors of X70 steels under simulated disbonded coating[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 35
[33] (陈旭, 李晓刚, 杜翠薇等. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30: 35)
[34] Wu M, Meng X N, Chen X, et al.Effect of CO2 corrosion product film on the corrosion behavior of metal[J]. J. Mater. Sci. Eng., 2016, 34: 681
[34] (吴明, 孟向楠, 陈旭等. CO2腐蚀产物膜对金属腐蚀行为的影响的研究进展[J]. 材料科学与工程学报, 2016, 34: 681)
[35] Li T, Gao K W, Lu M X.Formation mechanism of CO2 corrosion product scale on X65 steel[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 338
[35] (李桐, 高克玮, 路民旭. X65钢CO2腐蚀产物膜形成机理[J]. 中国腐蚀与防护学报, 2007, 27: 338)
[1] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[2] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[3] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[4] BAI Yang, WANG Zhenhua, LI Xiangbo, LI Yan. Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology[J]. 金属学报, 2019, 55(10): 1338-1348.
[5] Shaopeng QU, Baizhang CHENG, Lihua DONG, Yansheng YIN, Lijing YANG. Corrosion Behavior of 2205 Steel in Simulated Hydrothermal Area[J]. 金属学报, 2018, 54(8): 1094-1104.
[6] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[7] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
[8] Yongchang QING,Zhiwei YANG,Jun XIAN,Jin XU,Maocheng YAN,Tangqing WU,Changkun YU,Libao YU,Cheng SUN. CORROSION BEHAVIOR OF Q235 STEEL UNDER THE INTERACTION OF ALTERNATING CURRENT AND MICROORGANISMS[J]. 金属学报, 2016, 52(9): 1142-1152.
[9] Tianguo WEI,Jiankang LIN,Chongsheng LONG,Hongsheng CHEN. EFFECT OF DISSOLVED OXYGEN IN STEAM ON THE CORROSION BEHAVIORS OF ZIRCONIUM ALLOYS[J]. 金属学报, 2016, 52(2): 209-216.
[10] CAO Fengting, WEI Jie, DONG Junhua, KE Wei. CORROSION BEHAVIOR OF 20SiMn STEEL REBAR IN CARBONATE/BICARBONATE SOLUTIONS WITH THE SAME pH VALUE[J]. 金属学报, 2014, 50(6): 674-684.
[11] WU Dong ),WANG Xin,),DONG Wenchao ),LU Shanping ). EFFECTS OF WELDING THERMAL CYCLE AND AGING TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF A Ni-Fe BASE SUPERALLOY[J]. 金属学报, 2014, 50(3): 313-322.
[12] ZHOU Xiaowei,SHEN Yifu. CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION[J]. 金属学报, 2013, 49(9): 1121-1130.
[13] YANG Yan, LI Zili, WEN Chuang. EFFECTS OF ALTERNATING CURRENT ON X70 STEEL MORPHOLOGY AND ELECTROCHEMICAL BEHAVIOR[J]. 金属学报, 2013, 49(1): 43-50.
[14] HAO Xuehui, DONG Junhua, WEI Jie, KE Wei, WANG Changgang,XU Xiaolian, YE Qibin. INFLUENCE OF MICROSTRUCTURE OF AH32 CORROSION RESISTANT STEEL ON CORROSION BEHAVIOR[J]. 金属学报, 2012, 48(5): 534-540.
[15] SHENG Hai, DONG Chaofang, XIAO Kui, LI Xiaogang. LOCALIZED ELECTROCHEMICAL CHARACTERIZATION OF HIGH STRENGTH ALUMINIUM ALLOY AT THE CRACK TIP IN 3.5NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 414-419.
No Suggested Reading articles found!