Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 534-540    DOI: 10.3724/SP.J.1037.2012.00105
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF MICROSTRUCTURE OF AH32 CORROSION RESISTANT STEEL ON CORROSION BEHAVIOR
HAO Xuehui1, DONG Junhua1, WEI Jie1, KE Wei1, WANG Changgang1,XU Xiaolian2, YE Qibin2
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Technology Center of Angang Steel Co., Ltd., Anshan 114009
Cite this article: 

HAO Xuehui, DONG Junhua, WEI Jie, KE Wei, WANG Changgang,XU Xiaolian, YE Qibin. INFLUENCE OF MICROSTRUCTURE OF AH32 CORROSION RESISTANT STEEL ON CORROSION BEHAVIOR. Acta Metall Sin, 2012, 48(5): 534-540.

Download:  PDF(3747KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  International martime organization (IMO) has approvedand considered corrosion resistant steel as the only alternative for anti-corrosion coating since May 2010. The implementation of the standard will have a profound impact on ship building, steel, shipping and other industries. At present, Japan has a relatively mature technology, South Korea has completed the pre-development work, while China has only carried out some preliminary studies. If the technology is blocked, a large number of steel needs to be imported which would push up the cost of construction of the shipbuilding industry, and has a direct impact on the orders of shipping enterprises. The amount of steel for cargo oil tank in China is more than two million tons each year, and therefore, the localization of research and application of corrosion resistant steel for cargo oil tanks has become an urgent task. The impact of microstructure of the existing shipbuilding steel on corrosion behavior in simulated corrosion environment is studied based on the standard in this paper to develop our own corrosion resistant steel. According to the standard, immersion test was used to measure the corrosion process of AH32 corrosion resistant steel in the bottom simulated environment of cargo oil tanks. Using gravimetric measurement, electrochemical polarization and impedance methods, scanning electron microscopy and electron probe et al, the influence of microstructure of AH32 corrosion resistant steel on its corrosion behaviors was analysed. The experimental results showed that: during the test simulating the corrosion of the bottom plate of cargo oil tanks, corrosion rate of the rolling surface of AH32 corrosion resistant steel was low with small area fraction of pearlite, corrosion rate of the cross section was fast due to the big area fraction of pearlite, and both corrosion rate increased with the immersion time. In addition, there were uniform corrosion and the pits formed by dissolved inclusions in rolling surface, and corrosion of the cross-section was selected along the banded pearlite. The carbon enriched in pearlite area of the sample after immersion, which caused corrosion rate increased with the immersion time.
Key words:  AH32 corrosion resistant steel      immersion test      microstructure      corrosion behavior     
Received:  27 February 2012     
ZTFLH: 

TG172

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00105     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/534

[1] Yang M.  Encyclopedia Environ Health, 2011; 49: 33

[2] King J.  Mar Policy, 2005; 29: 235

[3] Li P, Li J D, Zhao S L, Kong L Z, Zhai Y C.  Fire Saf J, 2005; 40: 331

[4] Chen L.  Mar Equip/Mater Market, 2009; (1): 31

    (陈力. 船舶物资与市场, 2009; (1): 31)

[5] Zhang Z G.  World Iron Steel, 2008; (6): 60

    (张作贵. 世界钢铁, 2008; (6): 60)

[6] Performance Standard for Corrosion Resistant for Cargo Oil Tanks of Oil Tankers. IMO, 2010; 53(7): 42

[7] Wen Y.  Mar Equip/Mater Market, 2008; (4): 29

    (文言. 船舶物资与市场, 2008; (4): 29)

[8] Soares C G, Garbatov Y, Zayed A, Wang G.  Corros Sci, 2008; 50: 3095

[9] Shiomi H, Kaneko M, Kashima K, Imamura H.  TSCF2007 Shipbuilder Meet. Busan, 2007: 1

[10] Sakashita S, Tatsumi A, Imamura H, Ikeda H.  Shipbuilding Technol ISSF 2007. Osaka, 2007: 1

[11] Kashima K, Tanino Y, Kubo S, Inami A, Miyuki.  Shipbuilding Technol ISSF 2007. Osaka, 2007: 5

[12] Han D, Jiang Y M, Shi C, Zhao L, Li J.  Corros Sci, 2011; 53: 3796

[13] Hou B R, Li Y T, Li Y X, Zhang J L.  Mater Sci, 2000; 23: 189

[14] Guo J, Yang S W, Shang C J, Wang Y, He X L.  Corros Sci, 2008; 51: 242

[15] Wang X T, Duan J Z, Zhang J, Hou B R.  Mater Letts, 2008; 62: 1291

[16] Melchers R E.  Corros Sci, 2004; 46: 1669

[17] Lopez D A, Perez T, Simision S N.  Mater Des, 2003; 24: 561

[18] Otero E, Pardo A, Utrilla, Saenz E, Perez F J.  Mater Charact, 1995; 35: 145

[19] Suchanek J, Kuklik V, Zdravecka E.  Wear, 2009; 267 :2092

[20] Feng G H, Yang G, Yang D J, Bai G Y, Ren Q H, Li Y.  Iron Steel, 2000; 35(3): 22

     (冯光宏, 杨钢, 杨德江, 向德渊, 任庆海, 李岩. 钢铁, 2000; 35(3): 22)

[21] Zhou G F, He X L.  Dev Appl Mater, 1999; 14(3): 1

     (周桂峰, 贺信莱. 材料开发与应用, 1999; 14(3): 1)

[22] Cao C N.  Principles of Electrochemistry of Corrosion. Beijing: Chemical Industry Press, 2008: 149

     (曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2008: 149)

[23] Zhang G X, Si C Y, Yu D W.  Phys Test Chem Anal part: Phys Test, 2001; 37(6): 264

     (张国星, 斯初阳, 虞敌卫. 理化检验--物理分册, 2001; 37(6): 264)

[24] Cleary H J, Greene N D.  Corros Sci, 1969; 9(1): 3

[25] Lotz U, Sydberger T.  Corrosion, 1988; 44: 800
 
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!