Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1467-1473    DOI: 10.3724/SP.J.1037.2012.00433
Current Issue | Archive | Adv Search |
CRYSTALLIZATION BEHAVIOR OF Zr55Al10Ni5Cu30 AMORPHOUS ALLOYS WITH DIFFERENT MORPHOLOGIES AND THERMAL HISTORY CONDITIONS
HU Qiao1, LIN Xin1, YANG Gaolin1, HUANG Weidong1,LI Jinfu2
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
2.School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240
Cite this article: 

HU Qiao LIN Xin YANG Gaolin HUANG Weidong LI Jinfu. CRYSTALLIZATION BEHAVIOR OF Zr55Al10Ni5Cu30 AMORPHOUS ALLOYS WITH DIFFERENT MORPHOLOGIES AND THERMAL HISTORY CONDITIONS. Acta Metall Sin, 2012, 48(12): 1467-1473.

Download:  PDF(2129KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This work investigated the crystallization behavior of Zr55Al10Ni5Cu30  amorphous alloy (bulk and powder with different morphologies) under different heating and cooling rate conditions, and has found that the crystallization behavior of Zr55Al10Ni5Cu30  under different thermal history conditions was quite different. Under conventional heat treatment condition, the heating and cooling rates of the alloy were lower, the Zr55Al10Ni5Cu30  bulk amorphous alloy began to crystallization above the outset crystallization temperature Tx, the CuZr2 nanocrystalline was formed. With increasing temperature, its grain size became bigger, when exceeding the melting point, the thick CuZr2 lath+eutectic organizations of lath (CuZr2)+(Zr, Cu, Al, Ni) were formed under furnace cooling condition; under laser melting condition, however, the heating and cooling rates of alloy were higher, with increasing number of pulse frequency, the crystallization effect of Zr55Al10Ni5Cu30  bulk amorphous alloy accumulated gradually, in heat affected zone spherulites were precipitated and grew up, subsequently became unstable and finally a belt of equiax crystals were formed along the weld pool boundary. For amorphous alloy powder, due to its poorer the cooling performance than bulk amorphous, the cooling rate was lower, causing the powder particles crystallized into equiaxed dendrite during laser melting process, and with increasing laser energy, the equiaxed dendrite size increased.

Key words:  amorphous alloy      thermal history      heat treatment      laser      crystallization     
Received:  19 July 2012     
ZTFLH:  TG24  
Fund: 

Supported by National Natural Science Foundation of China (Nos.50971102 and 50901061) and National Basic Research Program of China (No.2011CB610402)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00433     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1467

[1] Byrne C J, Eldrup M. Science, 2008; 321: 502

[2] Wang W H, Dong C, Shek C H. Mater Sci Eng, 2004; R44: 45

[3] Conner R D, Dandliker R B, Scruggs V, Johnson W L. Int J Impact Eng, 2000; 24: 435

[4] Posan E, Ujj G, Kiss A, Telek B, Rak K, Udvardy M, Inoue A. Prog Mater Sci, 1998; 43: 365

[5] Xia X X, Wang Y T, Wang W H. Physics, 2008; 37: 98

[6] Zhang Z F, Eckert J, Schultz L. Acta Mater, 2003; 51: 1167

[7] Huang R, Suo Z, Prevost J H, Nix W D. J Mech Phys Solids, 2002; 50: 1011

[8] Wu F F, Zhang Z F, Peker A, Mao S X, Das J, Eckert J. J Mater Res, 2006; 21: 2331

[9] Wu F F, Zhang Z F, Mao S X, Peker A, Eckert J. Phys Rev, 2007; B75: 134201

[10] Loser W, Das J, G¨uth A, Klau H J, Mickel C, Kuhn U, Eckert J, Roy S K, Schultz L. Intermetallics, 2004; 12: 1153

[11] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085

[12] Schroers J, Johnson W L. J Appl Phys, 2000; 88: 44

[13] Yoshizawa Y, Oguma S, Yamauchi K. J Appl Phys, 1998; 64: 6044

[14] Lu K, Wang J T, Wei W D. J Appl Phys, 1991; 69: 522

[15] Yavari A R, Uriarte J L, Tousimi K, Moulec L A, Botta F W J, Kim K B, Rejmankova P, Kvick °A. J Metall Nano Mater, 1999; 307: 17

[16] Zhong M L, Liu W J, Yao K F, Ren J L, Hu S Q, Zhao H. Acta Metall Sin, 1997; 33: 413

(钟敏霖, 刘文今, 姚可夫, 任家烈, 胡姝嫱, 赵宏. 金属学报, 1997; 33: 413)

[17] Yoshioka H, Asami K, Kawashima A, Hashimoto K. Corros Sci, 1987; 27: 981

[18] Kawahito Y, Tersjima T, Kimura H, Kuroda T, Nakata K, Katayama S, Inoue A. Mater Sci Eng, 2008; B148: 105

[19] Lin X H, JohnsoWL, RhimWK. Mater Trans JIM, 1997; 38: 473

[20] Zhang H Y, Lu K, Hu Z Q. J Phys, 1995; 7: 5327

[21] Cao Q P, Li J F, Zhou Y H, Jiang Z. Appl Phys Lett, 2005; 86: 081913

[22] Tam C Y, Shek C H. Mater Sci Eng, 2004; A364: 198

[23] Yang G L, Lin X, Liu F C, Hu Q, Ma L, Li J F, Huang W D. Intermetallics, 2012; 22: 110

[24] Schroers J, Wu Y, Busch R, Johnson W L. Acta Mater, 2001; 49: 2773

[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[6] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[7] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[8] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[9] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[10] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[11] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[12] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[13] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[14] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[15] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
No Suggested Reading articles found!