Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1459-1466    DOI: 10.3724/SP.J.1037.2012.00263
Current Issue | Archive | Adv Search |
EFFECT OF HEAVILY DRAWING ON THE MICROSTRUCTURE AND PROPERTIES OF Cu–Cr ALLOYS
SONG Lunan 1, LIU Jiabin 1,2, HUANG Liuyi 1,3, ZENG Yuewu 1, MENG Liang 1
1) Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
2) Department of Mechanics Science and Engineering, Zhejiang University, Hangzhou 310027
3) Zhejiang Special Equipment Inspection and Research Institute, Hangzhou 310015
Cite this article: 

SONG Lunan LIU Jiabin HUANG Liuyi ZENG Yuewu MENG Liang. EFFECT OF HEAVILY DRAWING ON THE MICROSTRUCTURE AND PROPERTIES OF Cu–Cr ALLOYS. Acta Metall Sin, 2012, 48(12): 1459-1466.

Download:  PDF(4207KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu–Cr alloy is a kind of promising materials used as conductor due to its good strength and high conductivity. Heavy cold deformation could increase the strength effectively. Most of Cu and Cr phase are elongated into filaments during cold drawing. There exits plenty of Cu/Cr interface and the structure of Cu/Cr interface is thought to play an essential role in the properties of the Cu–Cr alloy. In this work, Cu–Cr wires were prepared by cold drawing method. The evolution of the microstructure and the structural change of phase interface during cold drawing have been investigated and the relationship between properties and microstructure also established. The microstructure consists of Cu matrix and Cr particles before cold drawing. As the drawing strain increases, both of Cu and Cr phases evolve into filamentary structure. Some residual Cr particles are still found in the alloy even at high drawing ratio. There is a relationship of (111)Cu//(110)Cr between Cu fibers and Cr fibers at high strain levels. The Cu/Cr interface is non–coherent before cold drawing and gradually evolves into the coherent interface at high drawing strains. The inter–solution ability of Cu and Cr elements across the Cu/Cr interface is enhanced with the increase in the drawing strain. The coherent Cu/Cr interface and the increasing of interface density should be responsible for the strength rising to an almost constant value and the increase in electrical resistivity of Cu–Cr alloys at high strain levels.

Key words:  Cu–Cr alloy      strength      conductivity      phase interface     
Received:  10 May 2012     
ZTFLH:  TG146.1  
Fund: 

Supported by National Natural Science Foundation of China (Nos.11202183 and 50671092), Key Technologies R&D Program (No.2009BAG12A09) and Natural Science Foundation of Zhejiang Province (No.Y4100193)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00263     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1459

[1] Deng J Q, Zhang X Q, Shang S Z, Liu F, Zhao Z X, Ye Y F. Mater Des, 2009; 30: 4444

[2] Wang X F, Zhao J Z, He J. Mater Sci Eng, 2007; A460: 69

[3] Liu P, Kang B X, Cao X G, Huang J L, Gu H C. Acta Metall Sin, 1999; 35: 561

(刘 平, 康布熙, 曹兴国, 黄金亮, 顾海澄. 金属学报, 1999; 35: 561)

[4] Chbihi A, Sauvage X, Blavette D. Acta Mater, 2012; 60: 4575

[5] West E G. Copper and its Alloys. Chichester: Ellis Horwood, 1982: 1

[6] Fujii T, Nakazawa H, Kato M, Dahmen U. Acta Mater,2000; 48: 1033

[7] Li Y, Chen X H, Liu P, Gao L H, Tian B H. Trans Mater Heat Treat, 2011; 32(2): 86

(李 炎, 陈小红, 刘 平, 高林华, 田保红. 材料热处理学报, 2011; 32(2): 86)

[8] Jin Y, Adachi K, Takeuchi T, Suzuki H G. J Mater Sci, 1998; 33: 1333

[9] Jin Y, Adachi K, Takeuchi T, Suzuki H G. Mater Sci Eng, 1999; A212: 149

[10] Liu J L, Wang E D, Liu Z Y, Hu L X, Fang W B. Mater Sci Eng, 2004; A382: 301

[11] Liu J B, Zhang L, Yao D W, Meng L. Acta Mater, 2011; 59: 1191

[12] Raabe D, Ohsaki S, Hono K. Acta Mater, 2009; 57: 5254

[13] Zhang D L, Mihara K, Takakura E, Suzuki H G. Mater Sci Eng, 1999; A296: 99

[14] Liu Y, Shao S, Liu K M, Yang X J, Lu D P. Mater Sci Eng, 2012; A531: 141

[15] Jin Y, Adachi K, Takeuchi T, Suzuki H G. Metals Mater Trans, 1998; 29A: 2195

[16] Sinclair C W, Embury J D, Weatherly G C. Mater Sci Eng, 1999; A272: 90

[17] Sun S J, Sakai S, Suzuki H G. Mater Trans, 2000; 41: 613

[18] Wang Y L, Han K, Huang Y, Zhang K Y. Mater Sci Eng, 2003; A351: 214

[19] Snoeck E, Lecouturier F, Thilly L, Casanove M J, Rakoto H, Coffe G, Askenazy S, Peyrade J P, Roucou C, Pantsyrny V, Shikov A, Nikulin A. Scr Mater, 1998; 38: 1643

[20] Liu K M, Lu D P, Zhou H T, Atrens A, Chen Z B, Zou J, Zeng S M. J Alloys Compd, 2010; 500: L22

[21] Lee K L, Whitehouse A F, Russell A M, Wongpreedee K, Hong S I, Withers P J. J Mater Sci, 2003; 38: 3437

[22] Wingrove A L. J Inst Met, 1972; 100: 313

[23] Cairns J H, Clough J, Dewey M, Nutting J. J Inst Met, 1971; 99: 93

[24] Lee T C, Robertson I M, Birnbaum H K. Ultramicroscopy, 1989; 29: 212

[25] Zhang L, Meng L. Chin J Nonferrous Met, 2005; 15: 751

(张雷, 孟亮. 中国有色金属学报, 2005; 15: 751)

[26] Heringhaus F, Schneider–Muntau H J, Gottstein G. Mater Sci Eng, 2003; A347: 9

[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[6] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[7] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[8] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[9] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[10] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[11] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[12] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[13] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[14] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[15] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
No Suggested Reading articles found!