Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1453-1458    DOI: 10.3724/SP.J.1037.2012.00270
Current Issue | Archive | Adv Search |
STUDY ON TWO CRITICAL MECHANISMS OF PLC EFFECT OF 5456 Al–BASED ALLOY
FU Shihua, CHENG Teng, ZHANG Qingchuan, CAO Pengtao, HU Qi
CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230027
Cite this article: 

FU Shihua CHENG Teng ZHANG Qingchuan CAO Pengtao HU Qi. STUDY ON TWO CRITICAL MECHANISMS OF PLC EFFECT OF 5456 Al–BASED ALLOY. Acta Metall Sin, 2012, 48(12): 1453-1458.

Download:  PDF(1287KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The normal critical behavior at low temperature and inverse critical behavior at high temperature of 5456 Al–based alloy were observed via tension tests at different temperatures. By comparing the stress–strain curves at different temperatures, the lower and upper envelope curves were identified. Before the critical strain, the stress followed the lower envelope curve at low temperature while followed the upper envelope curve at high temperature. The subsequent serrations, which were upward at low temperature but downward at high temperature, waved between the two envelope curves. Furthermore, in relation with stress and dislocation motion, two types of dislocation motion for stable plasticity corresponding to the upper and lower envelope curves were presented, respectively. The lower envelope curve implied few dislocations were pinned by solute, while the upper envelope curve implied some dislocations were pinned by solute prior to escape. Finally, two critical mechanisms were proposed that the critical strain depended on the first pinning process in normal behavior and on the first unpinning process in inverse behavior.

Key words:  5456 Al–based alloy      Portevin–Le Chatelier (PLC) effect      dynamic strain aging      dislocation      tension test     
Received:  14 May 2012     
ZTFLH:  O34  
Fund: 

Supported by National Basic Research Program of China (No.2011CB302105), National Natural Science Foundation of China (Nos.51271174, 11072233 and 11102201) and China Postdoctoral Science Foundation (No.20100480684)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00270     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1453

[1] Cottrell A H. Philos Mag, 1953; 44: 829

[2] Cieslar M, Fressengeas C, Karimi A, Martin J L. Scr Mater, 2003; 48: 1105

[3] Nagarjuna S, Anozie F N, Evans J T. Mater Sci Technol, 2003; 19: 1661

[4] Lu J Y, Jiang Z Y, Zhang Q C. Acta Metall Sin, 2006; 42:139

(卢俊勇, 蒋震宇, 张青川. 金属学报, 2006; 42: 139)

[5] Liu H W, Zhang Q C, Lu J Y, Xiang G F, Wu X P. Acta Metall Sin, 2006; 42: 925

(刘颢文, 张青川, 卢俊勇, 项国富, 伍小平. 金属学报, 2006; 42: 925)

[6] Sleeswyk A W. Acta Metall, 1958; 6: 598

[7] Mulford R A, Kocks U F. Acta Metall, 1979; 27: 1125

[8] McCormick P G. Acta Metall, 1988; 36: 3061

[9] Springer F, Nortmann A, Schwink C. Phys Status Solidi, 1998; 170A: 63

[10] Klose F B, Ziegenbein A, Weidenm¨uller J, Neuh¨auser H, Hahner P. Comput Mater Sci, 2003; 26: 80

[11] Balik J, Lukac P, Kubin L P. Scr Mater, 2000; 42: 465

[12] Chihab K, Fressengeas C. Mater Sci Eng, 2003; A356: 102

[13] Peng K P, Chen W Z, Qian K W. Mater Sci Eng, 2006;A419: 53

[14] Cui C Y, Gu Y F, Yuan Y, Harada H. Scr Mater, 2011;64: 502

[15] Kubin L P, Estrin Y. Acta Metall Mater, 1990; 38: 697

[16] McCormick P G. Acta Metall, 1972; 20: 351

[17] Brechet Y, Estrin Y. Acta Metall Mater, 1995; 43: 955

[18] Cai M C, Niu L S, Yu T, Shi H J, Ma X F. Mater Sci Eng,2010; A527: 5175

[19] Rodriguez P, Venkadesan S. Solid State Phenom, 1995;42–43: 257

[20] Soare M A, Curtin W A. Acta Mater, 2008; 56: 4091

[21] Flor H, Neuh¨auser H. Acta Metall, 1980; 28: 939

[22] Rizzi E, H¨ahner P. Int J Plasticity, 2004; 20: 121

[23] Hu Q, Zhang Q C, Cao P T, Fu S H. Acta Mater, 2012; 60: 1647

[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[12] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[13] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[14] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[15] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
No Suggested Reading articles found!