Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (6): 696-702    DOI: 10.3724/SP.J.1037.2012.00152
论文 Current Issue | Archive | Adv Search |
SENSITIVITY ANALYSIS OF THE EFFECT OF INTERFACIAL HEAT TRANSFER COEFFICIENT ON DISTORTION SIMULATION DURING QUENCHING
CHENG Baisong, XIAO Namin, LI Dianzhong, LI Yiyi
Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

CHENG Baisong, XIAO Namin, LI Dianzhong, LI Yiyi. SENSITIVITY ANALYSIS OF THE EFFECT OF INTERFACIAL HEAT TRANSFER COEFFICIENT ON DISTORTION SIMULATION DURING QUENCHING. Acta Metall Sin, 2012, 48(6): 696-702.

Download:  PDF(1644KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The distortions of C-ring and cut cylinder of austenitic stainless steel after water quenching were investigated using simulation and experiment methods. The results indicated that the accurate measurement of temperature had a major influence on interfacial heat transfer coefficient (IHTC) which is calculated using the inverse analysis method. The sparse data of the high temperature stage due to low sampling frequency resulted in the lower value of IHTC. The simulated distortion during water quenching was mostly decided by the change of IHTC. The simulation results showed that the trend and magnitude of distortion predicted by the IHTCH (calculated from the data of high sampling frequency) agreed better with the experiments than that by the IHTCL (calculated from the data of low sampling frequency). The further analysis showed that the IHTC at high temperature had the great influence on the calculated yield behavior of materials. The high values of IHTC caused that the work piece kept in the yield status at higher temperature and wider temperature range. So the simulation using the IHTCH predicted more serious plastic deformation and larger rigid movement. Further analysis showed that the simulation result of distortions was sensitive to the variation of IHTC at the high temperature stage, while insensitive to the variation at the low temperature stage.
Key words:  interfacial heat transfer coefficient      simulation      heat treatment      distortion     
Received:  26 March 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00152     OR     https://www.ams.org.cn/EN/Y2012/V48/I6/696

[1] Liu Y Y, Wang H, Ji C T, Wang B S.  Met Heat Treat, 2005; 30: 46

    (刘云旭, 王淮, 季长涛, 王柏树. 金属热处理, 2005; 30: 46)

[2] Pan J S, Wang J, Han L Z, Gu J F.  Met Heat Treat, 2008; 33: 1

    (潘健生, 王婧, 韩利战, 顾剑锋. 金属热处理, 2008; 33: 1)

[3] Zhang W M, Pan J S, Qian C J, Li Y J, Zhang G.  Trans Mater Heat Treat, 2001; 22: 60

    (张伟民, 潘健生, 钱初均, 李勇军, 张戈. 材料热处理学报, 2001; 22: 60)

[4] Ye J S, Li Y J, Pan J S, Hu M J.  Mater Mech Eng, 2002; 26: 12

    (叶健松, 李勇军, 潘健生, 胡明娟. 机械工程材料, 2002; 26: 12)

[5] Hernandez--Morales B, Barba--Mendez O, Ingalss--Cruz A, Barrera--Godinez J A. Int J Mater Prod Technol, 2005; 24: 306

[6] Ferguson B L, Petrus G J, Pattok T.  Proc 3rd Int Conf on Quenching and Control of Distortion, Materials Park, OH: ASM International, 1999: 291

[7] Arimoto K, Lambert D, Li G, Arvind A, Wu W T. In: Wallis R A, Walton H eds., Proc 18th Conf on Heat Treating, Materials Park, OH: ASM International, 1998: 639

[8] Brooks B E, Beckermann C.  Proc 61st Technical and Operating Conference, Chicago: Steel Founder's Society of America, 2007: 1

[9] Inoue T, Wang Z G.  Mater Sci Technol, 1985; 1: 845

[10] Inoue T, Yamaguchi T, Wang Z G.  Mater Sci Technol, 1985; 1: 872

[11] Ju D Y, Zhang W M, Zhang Y.  Mater Sci Eng, 2006; A438--440: 246

[12] Lee S J, Lee Y K.  Acta Mater, 2008; 56: 1482

[13] Pan J S, Zhang W M, Tian D, Gu J F, Hu M J.  Eng Sci, 2003; 5: 47

     (潘健生, 张伟民, 田东, 顾剑锋, 胡明娟. 中国工程科学, 2003; 5: 47)

[14] Michel F, Louchez P R, Samuel F H.  Trans Am Foundry-men's Soc, 1995; 103: 278

[15] Guthrie R I L, Isac M, Kim J S, Tavares R P.  Metall Mater Trans, 2000; 31B: 1031

[16] Hallam C P, Griffiths W D, Butler N D.  Mater Sci Forum, 2000; 329--330: 467

[17] Santos C A, Quaresma J W V, Garcia A.  J Alloys Compd, 2001; 319: 174

[18] Nelson C W. In: the Society of  Die Casting Engineers ed., 6th SDCE International Die Casting Congress, Cleveland, OH: SDCE, 1970: 1

[19] Hong S, Backman D G, Mehrabian R.  Metall Mater Trans, 1979; 10B: 299

[20] Dour G, Dargusch M, Davidson C, Nef A.  J Mater Process Technol, 2005; 169: 223

[21] Hamasaiid A, Dour G, Dargusch M, Loulou T, Davidson C, Savage G.In: Gandin C A, Bellet M eds.,  Modeling of Casting,Welding and Advanced Sollidification Processes. Vol.XI, Warrendale, PA: Minerals,Metals and Materials Society, 2006: 1205

[22] Guo Z P, Xiong S M, Cho S H, Choi J K.  Acta Metall Sin, 2008; 44: 433

     (郭志鹏, 熊守美, 曺尚铉, 崔正吉. 金属学报, 2008; 44: 433)

[23] Guo Z P, Xiong S M, Cho S H, Choi J K.  Acta Metall Sin, 2007; 43: 1155

     (郭志鹏, 熊守美, 曺尚铉, 崔正吉. 金属学报, 2007; 43: 1155)

[24] Guo Z P, Xiong S M, Cho S H, Choi J K.  Acta Metall Sin, 2007; 43: 1149

     (郭志鹏, 熊守美, 曺尚铉, 崔正吉. 金属学报, 2007; 43: 1149)

[25] Hou Z L, Yao S, Wang T L, Zhang X G, Jin J Z.  Trans Mater Heat Treat, 2008; 29: 157

     (候忠霖, 姚山, 王廷利, 张兴国, 金俊泽. 材料热处理学报, 2008; 29: 157)
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[6] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[7] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[8] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[11] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[12] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[13] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[14] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[15] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
No Suggested Reading articles found!