Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (6): 687-695    DOI: 10.3724/SP.J.1037.2012.00033
论文 Current Issue | Archive | Adv Search |
EFFECT OF MOLD ON CORROSION BEHAVIOR OF PRINTED CIRCUIT BOARD-COPPER AND ENIG FINISHED
ZOU Shiwen1, LI Xiaogang1,2, DONG Chaofang1,2,LI Huiyan1, XIAO Kui1,2
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
2. Key Laboratory of Corrosion and Protection, Ministry of Education, University of Science and Technology Beijing,Beijing 100083
Cite this article: 

ZOU Shiwen1, LI Xiaogang1,2, DONG Chaofang1,2,LI Huiyan1, XIAO Kui1,2. EFFECT OF MOLD ON CORROSION BEHAVIOR OF PRINTED CIRCUIT BOARD-COPPER AND ENIG FINISHED. Acta Metall Sin, 2012, 48(6): 687-695.

Download:  PDF(4804KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  With the development of miniaturization of electronic circuits and occurrence of growing number of project failure cases, the corrosion behavior of printed circuit board (PCB) becomes a non-ignorable scientific issue under the hygrothermal condition with mold. In this paper, the corrosion behavior of unfinished PCB (PCB-Cu) and PCB finished by electroless nickel immersion gold (PCB--ENIG) in mold environment was studied using scanning Kelvin probe (SKP). The mold growth behavior was observed by stereo microscope and SEM, and the corrosion products were analyzed by EDS. The results showed that the number of mold increased on the surface of PCB-Cu and PCB-ENIG specimens under hygrothermal condition. After a growth cycle of 28 d, the new generation of conidium formed with good activity. After 84 d mold test, corrosion occurred on both two kinds of specimens and it was more severe on PCB--ENIG. Meanwhile the activity of mold was an inhibitor in the corrosion process of PCB--Cu and a promoter in the pore corrosion process of PCB-ENIG.
Key words:  mold      printed circuit board      scanning Kelvin probe      copper      electroless nickel immersion gold     
Received:  13 January 2012     
ZTFLH: 

TG172.4

 
Fund: 

National Science and Technology Infrastructure Platforms Construction Projects

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00033     OR     https://www.ams.org.cn/EN/Y2012/V48/I6/687

[1] Huang H L, Dong Z H, Chen Z Y, Guo X P.  Corros Sci, 2011; 53: 1230

[2] Chen D M, Li J G, Su X R, Yang G.  Equip Environ Eng, 2006; 3: 78

    (陈丹明, 李金国, 苏兴荣, 杨光. 装备环境工程, 2006; 3: 78)

[3] Fang H H P, Xu L C, Chan K Y.  Water Res, 2002; 36: 4709

[4] Klintworth R, Reher H J, Viktorov A N, Bohle D.  Acta Astronaut, 1999; 44: 569

[5] Liu X F, Chen G M, Wang H G.  Corros Sci Prot Technol, 2004; 16: 318

    (刘晓方, 陈桂明, 王汉功. 腐蚀科学与防护技术, 2004; 16: 318)

[6] Zhang J Y.  Mater Prot, 2007; 40: 59

    (张继源. 材料保护, 2007; 40: 59)

[7] Sun H L, Wang X H.  Equip Environ Eng, 2008; 5: 49

     (孙海龙, 王晓慧. 装备环境工程, 2008; 5: 49)

[8] Liang Z Y, Lin Y S, Ye D Z, Yao R M.  Acta Oceanol Sin, 1986; 8: 251

    (梁子原, 林燕顺, 叶德赞, 姚瑞梅. 海洋学报, 1986; 8: 251)

[9] Juzeliunas E, Ramanauskas R, Lugauskas A, Samuleviciene A, Leinartas K. Electrochem Commun, 2005; 7: 305

[10] Juzeliunas E, Ramanauskas R, Lugauskas A, Leinartas K, Samuleviciene M, Sudavicius A, Juskenas R. Corros Sci, 2007; 49: 4098

[11] Huang H L, Guo X P, Zhang G A, Dong Z H.  Corros Sci, 2011; 53: 1700

[12] Zhang S N, Osterman M, Shrivastava A, Kang R, Pecht M G. IEEE Trans Device Mater Relia, 2010; 10: 71

[13] Gen W Y, Chen X, Hu A M.  Microelectron Rel, 2011; 51: 866

[14] Zhao P, Pecht M.  Microelectron Rel, 2003; 43: 775

[15] Kleber Ch, Wiesinger R, Schnoller J, Hilfrich U, Hutter H, Schreiner M.  Corros Sci, 2008; 50: 1112

[16] Tran T T M, Fiaud C, Sutter E M M.  Corros Sci, 2005; 47: 1724

[17] Simeon J K.  IEEE T Mater Pack, 1969; 5: 89

[18] Sun A C, Moffat H K, Enos D G, Glauner C S.  IEEE Trans Compon Pack T, 2007; 30: 796

[19] Russo S G, Henderson M J, Hinton B R W.  Eng Fail Anal, 2002; 9: 423

[20] Morozova E V, Baranova M V, Kozlov V P, Tereshina V M, Memorskaya A S, Feofilova E P. Microbiology, 2001; 70: 527

[21] Abarca M L, Accensi F, Cano J, Cabanes F J.  Antonie van Leeuwenhoek, 2004; 86: 33

[22] Wang L W, Du C W, Liu Z Y, Zeng X X, Li X G.  Acta Metall Sin, 2011; 47: 1227

     (王力伟, 杜翠薇, 刘智勇, 曾笑笑, 李晓刚. 金属学报, 2011; 47: 1227)

[23] Stratmann M, Streckel H, Bunsen B.  Phys Chem, 1988; 92: 1244

[24] Sun M, Xiao K, Dong C F, Li X G, Zhong P.  Acta Metall Sin, 2011; 47: 442

     (孙敏, 肖葵, 董超芳, 李晓刚, 钟平. 金属学报, 2011; 47: 442)

[25] Ambat R, Mφller P.  Corros Sci, 2007; 49: 2866

[26] Trethewey K P, Chamberlain J.  Corrosion for Science and Engineering.Beijing: World Publishing Corporation, 2000: 84
 
 
[1] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[2] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[3] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[4] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[5] ZHAO Naiqin, GUO Siyuan, ZHANG Xiang, HE Chunnian, SHI Chunsheng. Progress on Graphene/Copper Composites Focusing on Reinforcement Configuration Design: A Review[J]. 金属学报, 2021, 57(9): 1087-1106.
[6] PENG Wuqingliang, LI Qiang, CHANG Yongqin, WANG Wanjing, CHEN Zhen, XIE Chunyi, WANG Jichao, GENG Xiang, HUANG Lingming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor[J]. 金属学报, 2021, 57(7): 831-844.
[7] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[8] Bin CHEN,Jie HE,Xiaojun SUN,Jiuzhou ZHAO,Hongxiang JIANG,Lili ZHANG,Hongri HAO. Liquid-Liquid Phase Separation of Fe-Cu-Pb Alloy and Its Application in Metal Separation and Recycling of Waste Printed Circuit Boards[J]. 金属学报, 2019, 55(6): 751-761.
[9] Ting ZHANG,Yuhong ZHAO,Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU. Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding[J]. 金属学报, 2019, 55(5): 638-646.
[10] Jianqiang REN, Shuhua LIANG, Yihui JIANG, Xiang DU. Research on the Microstructure and Properties of In Situ (TiB2-TiB)/Cu Composites[J]. 金属学报, 2019, 55(1): 126-132.
[11] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[12] Tingting ZHAO, Zhixin KANG, Xiayu MA. Fabricating Superhydrophobic Copper Meshes by One-Step Electrodeposition Method and Its Anti-Corrosion and Oil-Water Separation Abilities[J]. 金属学报, 2018, 54(1): 109-117.
[13] Tingbiao GUO, Qi LI, Chen WANG, Feng ZHANG, Zhi JIA. Deformation Characteristics and Mechanical Properties of Single Crystal Copper During Equal Channel Angular Pressing by Route A[J]. 金属学报, 2017, 53(8): 991-1000.
[14] Wei FU,Xiaoguo SONG,Long LONG,Jianhang CHAI,Jicai FENG,Guodong WANG. INTERFACIAL MICROSTRUCTURE AND MECHANI-CAL PROPERTIES OF INDIRECT BRAZED GRAPHITE/COPPER JOINT[J]. 金属学报, 2016, 52(6): 734-740.
[15] Zhisheng WANG, Xiang CHEN, Yanxiang LI, Huawei ZHANG, Yuan LIU. EFFECTS OF B ON HIGH TEMPERATURE MECHA-NICAL PROPERTIES AND THERMAL FATIGUE BEHAVIOR OF COPPER DIE-CASTING DIE STEEL[J]. 金属学报, 2015, 51(5): 519-526.
No Suggested Reading articles found!