Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 941-950    DOI: 10.3724/SP.J.1037.2012.00150
论文 Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF NUCLEAR GRADE ALLOYS 690 AND 800 IN SIMULATED HIGH TEMPERATURE AND HIGH PRESSURE PRIMARY WATER OF PRESSURIZED WATER REACTOR
LI Xiaohui, WANG Jianqiu, HAN En–Hou, KE Wei
State Key laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LI Xiaohui WANG Jianqiu HAN En–Hou KE Wei. CORROSION BEHAVIOR OF NUCLEAR GRADE ALLOYS 690 AND 800 IN SIMULATED HIGH TEMPERATURE AND HIGH PRESSURE PRIMARY WATER OF PRESSURIZED WATER REACTOR. Acta Metall Sin, 2012, 48(8): 941-950.

Download:  PDF(3861KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behaviors of nuclear grade commercial alloys 690 and 800 were studied by in situ electrochemical measurements using a self–built high temperature and high pressure water loop system, combining with SEM observation and XPS analysis. The results show that the corrosion potentials of alloys 690 and 800 decrease gradually with immersion time increasing, while the immersion time has no obvious impact on the result from electrochemical impedance spectroscopy (EIS). A large number of needle–like oxides have been found on the surface of alloy 690 after being exposed to high temperature and high pressure water for 408 h. For alloy 800, except needle–like oxides, many particle oxides are also observed. For alloy 690, Cr is rich at inner side of oxide film, while it is rich at outer side of oxide film for alloy 800. Alloy 690 shows better corrosion resistance than alloy 800 in high temperature and high pressure water. After immersion experiment, the contents of Ni2+, Cr3+ and Fe3+ ions in the test water solutions are 0.1×10−6, 0.1×10−6 and 0.3×10−6, respectively
Key words:  alloy 690      alloy 800      high temperature and high pressure water      corrosion     
Received:  20 March 2012     
ZTFLH: 

TG172.82

 
Fund: 

Supported by National Basic Research Program of China (No.2011CB610502) and National Funds for Distinguished Young Scholars (No.51025104)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00150     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/941

[1] Dutta R S. J Nucl Mater, 2009; 393: 343

[2] Staehle R W, Gorman J A. Corrosion, 2003; 59: 939

[3] Betova I, Bojinov M, Kinnunen P, Lundgren K, Saario T. Electrochim Acta, 2009; 54: 1056

[4] Montemor M F, Ferreira M G S, Hakiki N E, Belo M D C. Corros Sci, 2000; 42: 1635

[5] Hwang S S, Kim H P, Lee D H, Kim U C, Kim J S. J Nucl Mater, 1999; 275: 28

[6] Kim S W, Kim H P. Corros Sci, 2009; 51: 191

[7] Panter J, Viguier B, Clou´e J M, Foucault M, Combrade P, Andrieu E. J Nucl Mater, 2006; 348: 213

[8] Park I G, Lee C S, Hwang S S, Kim H P, Kim J S. Met Mater Int, 2005; 11: 401

[9] Li X H, Huang F, Wang J Q, Han E H, Ke W. Acta Metall Sin, 2011; 47: 847

(郦晓慧, 黄发, 王俭秋, 韩恩厚, 柯伟. 金属学报, 2011; 47: 847)

[10] Canut J M L, Maximovitch S, Dalard F. J Nucl Mater, 2004; 334: 13

[11] Huang J B, Wu X Q, Han E H. Corros Sci, 2009; 51: 2976

[12] Carranza R M, Alvarez M G. Corros Sci, 1996; 38: 909

[13] Olmedo A M, Villegas M, Alvarez M G. J Nucl Mater, 1996; 229: 102

[14] Sennour M, Marchetti L, Martin F, Perrin S, Molins R, Pijolat M. J Nucl Mater, 2010; 402: 147

[15] de Ara´ujo Figueiredo C, Bosch R W, Vankeerberghen M. Electrochim Acta, 2011; 56: 7871

[16] Qiu Y B, Shoji T, Lu Z P. Corros Sci, 2011; 53: 1983

[17] Zhang Z M, Wang J Q, Han E H, Ke W. Corros Sci, 2011; 53: 3623

[18] Vaillant F, Buisine D, Prieux B. In: Airey G ed., Proc 7th Int Symp Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Breckenridge, Colorado, USA, 1995: 219

[19] Crum J, Scarberry R C. J Mater Energy Systems, 1982; 4: 125

[20] Bosch R W, F´eron D, Celis J P. Electrochemistry in Light Water Reactors, Reference Electrodes, Measurement, Corrosion and Tribocorrosion Issues. Cambridge: Woodhead Publishing in Materials, 2007: 3

[21] Li X H, Wang J Q, Han E H, Ke W. Chin Pat, ZL 201020521040.8, 2010

(郦晓慧, 王俭秋, 韩恩厚, 柯伟. 中国实用新型专利, ZL 201020521040.8, 2010)

[22] Sun H. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010

(孙华. 中国科学院金属研究所博士论文, 沈阳, 2010)

[23] Macdonald D D, Scott A C, Wentrcek P. J Electrochem Soc, 1979; 126: 908

[24] Bosch R W, Vankeerberghen M. Electrochim Acta, 2007; 52: 7538

[25] Bosch R W, W´eber M, Vankeerberghen M. J Nucl Mater, 2007; 360: 304

[26] Macak J, Sajdl P, Kucera P, Novotny R, Vosta J. Electrochim Acta, 2006; 51: 3566

[27] Li X H, Wang J Q, Han E H, Ke W. Corros Sci, 2012, submitted

[28] Dutta R S, Tewari R. Br Corros J, 1999; 34: 201

[29] Dutta R S, Lobo A, Purandare R, Kulkarni S K, Dey G K. Metall Mater Trans, 2002; 33A: 1437

[30] Dutta R S, Purandare R, Lobo A, Kulkarni S K, Dey G K. Corros Sci, 2004; 46: 2937

[31] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2565

[32] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P. Electrochim Acta, 2004; 49: 3957

[33] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840

[34] Marcus P, Grimal J M. Corros Sci, 1992; 33: 805

[35] Li M S. High Temperature Corrosion of Metals. Beijing: Metallurgical Industry Press, 2001: 5

(李美栓. 金属的高温腐蚀. 北京: 冶金工业出版社, 2001: 5)

[36] Robertson J. Corros Sci, 1991; 32: 443
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[6] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[7] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[8] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[11] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[12] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[13] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!