Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 815-821    DOI: 10.3724/SP.J.1037.2012.00114
论文 Current Issue | Archive | Adv Search |
STUDY ON THE CORROSION MECHANISM OF T2 COPPER CONDENSER TUBE UNDER THE HUMID ENVIRONMENT
WANG Changgang1), DENG Weimin2), ZHAO Guangyu2),  DONG Junhua1),  KE Wei1), CHEN Xuebin1)
1) State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Military Representative Office of the Navy in Shanghai Power Station Auxiliary Equipment Factory, Shanghai 200090
Cite this article: 

WANG Changgang DENG Weimin ZHAO Guangyu DONG Junhua KE Wei CHEN Xuebin. STUDY ON THE CORROSION MECHANISM OF T2 COPPER CONDENSER TUBE UNDER THE HUMID ENVIRONMENT. Acta Metall Sin, 2012, 48(7): 815-821.

Download:  PDF(3420KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  During the maintenance of two years, T2 copper tube in a heat exchanger has leaked, it can be deduced that the residual water and volatile water vapor would play an important role in leakage. By SEM, OM, stereo microscope observation, it was found that serious corrosion happened on the surface of copper in the gaps constituted by copper tube and stainless steel baffle holes, and perforation occurred in a few locations. Wetting experiments show that the gap formed between the T2 copper tube and the baffle hole wall is small enough that it could produce siphon liquid film, which could connect the copper tube surface and baffle hole. Therefore there is a difference of oxygen supply between the copper tube outer surface and the copper tube in the gap site, the outer surface of copper tube becomes oxygen-rich zone and the copper tube in the gap site oxygen-poor zone. Potential monitoring results show that the potential of the external surface of copper tube with an oxide is higher than that of copper in the gap site leading to a galvanic cell formed between them. The surface of copper in the gap site is anode region and the external copper tube surface is cathode region. The differences of oxygen supply combined the effect of the galvanic cell leads to the severe localized corrosion of copper tube in the gap site.
Key words:  T2 copper tube      corrosion      oxygen concentration cell      galvanic battery     
Received:  05 March 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00114     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/815

[1] Ji L N, Gong Y, Yang Z G. Microelectron Reliab, 2010; 50: 1163

[2] Khajavi M R, Abdolmaleki A R, Adibi N, Mirfendereski S. Eng Failure Analys, 2007; 14: 731

[3] Dorri M, Harandizadeh D. Eng Failure Analys, 2012; 19: 87

[4] Chandra K, Kain V, Dey G K, Shetty P S, Kishan R. Eng Failure Analys, 2010; 17: 587

[5] Lee S H, Kim J G, Koo F Y. Eng Failure Analys, 2010; 17: 1424

[6] Pantazopoulos G, Vazdirvanidis A, Tsinopoulos G. Eng Failure Analys, 2011; 18: 649

[7] Edwards M, Ferguson J F, Reiber S H. J AmWaterWorks Assoc, 1994; 87(7): 74

[8] McDougall J L, Stevenson M E. J Failure Analys Prev, 2005; 5(1): 13

[9] Stevenson M E, Barkey M E, McDougall J L. J Failure Analys Prev, 2005; 5(6): 25

[10] Duffner D H. J Failure Analys Prev, 2005; 5(1): 79

[11] Pantazopoulos G, Tsinopoulos G. J Failure Analys Prev, 2006; 6(6): 8

[12] Kuznicka B. Eng Failure Analys, 2009; 16: 2382

[13] Olszewski A M. J Failure Analys Prev, 2007; 7(4): 238

[14] Itoh M, Minato A, Aizawa M, Tanno K. Boshoku Gijtsu, 1984; 33: 504

[15] Levine R S. Plant Eng, 1978; 32: 101

[16] Baba H, Kodama T, Fujii T. Trans Natl Res Inst Met, 1986; 28: 248

[17] Christy A G, Lowe A, Otieno–Alego V, Stoll M, Webster R D. J Appl Electrochem, 2004; 34: 225

[18] Sequeira C A C. Br Corros J, 1995; 30: 137

[19] Sosa M, Patel S, Edwards M. Corrosion, 1999; 55: 1069

[20] Edwards M, Rehring J, Mayer T. Corrosion, 1994; 50: 366

[21] Fujii T, Kodama T, Baba H. Corros Sci, 1984; 24: 901

[22] Drogowska M, Brossard L, M´enard H. Surf Coat Technol, 1988; 34: 383

[23] Fernandes P J L. Eng Failure Analys, 1998; 5: 35

[24] Myers J R, Cohen A. Mater Performance, 1995; 34(10): 60

[25] Mattsson E. Br Corros J, 1980; 15: 6

[26] Huang N B, Liang C H. Refrigeration, 2001; 20(2): 25

(黄乃宝, 梁成浩. 制冷. 2001; 20(2): 25)
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[4] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[5] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[6] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[7] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[8] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[11] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[12] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[13] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!