Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 508-512    DOI: 10.3724/SP.J.1037.2011.00483
论文 Current Issue | Archive | Adv Search |
ELECTROCHEMICAL PREPARATION OF PANI/CeO2 COMPOSITE WITH SPECIAL MORPHOLOGY
SANG Xiaoguang1, ZENG Fanwu2, LIU Xiaoxia1
1. Department of Chemistry, Northeastern University, Shenyang 110819
2. National Laboratory for Materials Science, Institute of Metal Research,Chinese Academy of Sciences, Shenyang,110016
Cite this article: 

SANG Xiaoguang, ZENG Fanwu, LIU Xiaoxia. ELECTROCHEMICAL PREPARATION OF PANI/CeO2 COMPOSITE WITH SPECIAL MORPHOLOGY. Acta Metall Sin, 2012, 48(4): 508-512.

Download:  PDF(626KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Composite materials consisting of conducting polymers and inorganic particles have attracted considerable attention as they combine the advantages of both components and have potential applications in many fields. Electrodeposition is an attractive method for the preparation of thin films since it offers the advantages of low processing temperature, normal handling pressure, high purity of deposition, and controlled thickness of the film. Polyaniline/CeO2 (PANI/CeO2) composite with “horn--like” morphology was prepared by potentiostatic electrodeposition method in 0.05 mol/L Ce(NO3)3 containing 0.05 mol/L CH3COOH and 0.025 mol/L aniline (An) at 1.1 V (vs SCE) (pH=5.5). The morphology and composition of the PANI/CeO2composite were characterized by SEM and TEM. The results indicated that the PANI/CeO2 composite had “horn--like” morphology. Characteristic vibrations of PANI were observed on the Fourier transform infrared spectrum (FTIR) of PANI/CeO2 composite. The PANI/CeO2 composite displayed characteristic electrochemical behaviors of PANI in phosphate buffer (pH=6.9), based on cyclic voltammetric experiments. The influences of electrodeposition conditions on the morphology of the composite were investigated by changing the reaction time and the potentiostatic potential. The results showed that potential is the key factor for the formation of “horn--like” PANI/CeO2 composite. PANI/CeO2 composite obtained at 0.8 V existed in nanoparticles. No “horn-like” composite was observed at this lower potential, even after prolonged reaction time. More protons were released during the electrochemical polymerization of aniline and the electrochemical deposition of CeO2 at higher potential. One--dimensional growth of PANI was promoted due to the effect control of secondary growth of PANI at lower pH media, resulting in nanofibrous composite. More PANI and CeO2 were formed along with the electrodeposition and so more protons were released. Thus the nanofiber changed thinner and “horn-like” PANI/CeO2 was formed.
Key words:  polyaniline      CeO2      composite      electro-codeposition     
Received:  26 July 2011     
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00483     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/508

[1] Zhang X, Wang J, Chen L.  Acta Metall Sin, 2009; 45: 1135

    (张霞, 王晶, 陈莉. 金属学报, 2009; 45: 1135)

[2] Peng X Y, Liu X X, Hua P J, Diamond D, Lau K T.  J Solid State Electrochem, 2010; 14: 1

[3] Bian L J, Zhang J H, Qi J, Liu X X, Dermot D, Lau K T. Sens Actuators, 2010; 147B: 73

[4] Wan M X, Zhou W X, Li J C.  Synth Met, 1996; 78: 27

[5] Wei Y, Li M G, Fang B.  Chin J Chem, 2007; 25: 1622

[6] Ansari A A, Solanki P R, Malhotra B D.  Appl Phys Lett,2008; 92: 263901

[7] Bene R, Pinter Z, Perczel I V, Fleischer M, Reti F.  Vacuum,2001; 61: 275

[8] Parvatikar N, Jain S, Bhoraskar S V, Prasad M V N A. J Appl Polym Sci, 2006; 102: 5533

[9] Diaz D J, Greenletch N, Solanki A, Karakoti A, Seal S.  Catal Lett, 2007; 119: 319

[10] Xu H, Hou X.  Int J Hydrogen Energy, 2007; 32: 4397

[11] Zhitomirsky I, Petric A.  Ceram Int, 2001; 27: 149

[12] Kamada K, Higashikawa K, Inada M, Enomoto N, Hojo J. J Phys Chem, 2007; 111C: 14508

[13] Iwuoha E I, de Villaverde D S, Garcia N P, Smyth M R, Pingarron J M. Biosens Bioelectron, 1997; 12: 749

[14] Ates M, Sarac A S.  Prog Org Coat, 2009; 66: 337

[15] Xia L, Wei Z, Wan M.  J Colloid Interface Sci, 2010; 341: 1

[16] Chen L, Sun L J, Luan F, Liang Y, Li Y, Liu X X. J Power Sources, 2010; 195: 3742

[17] Nicolas-Debarnot D, Poncin-Epaillard F.  Anal Chim Acta,2003; 475: 1

[18] Liu X X, Zhang L, Li Y B, Bian L J, Su Z, Zhang L J. J Mater Sci, 2005; 40: 4511

[19] Jiang H F, Liu X X.  Electrochim Acta, 2010; 55: 7175

[20] Huang J X, Kaner R B.  Chem Commun, 2006; 4: 367

[21] Liu X X, Dou Y Q, Wu J, Peng X Y.  Electrochim Acta,2008; 53: 4693

[22] Peng X Y, Luan F, Liu X X, Diamond D, Lau K T.  Electrochim Acta,2009; 54: 6172

[23] Zou B X, Liu X X, Diamond D, Lau K T.  Electrochim Acta,2010; 55: 3915

[24] Liu X X, Zhang L, Li Y B, Bian L J, Huo Y Q, Su Z. Polym Bulletin, 2006; 57: 825

[25] Cummings C Y, Stott S J, Bonne M J, Edler K J, King P M, Mortimer R J,Marken F.  J Solid State Electrochem, 2008; 12: 1541

[26] Liu X X, Bian L J, Zhang L, Zhang L J.  J Solid State Electrochem, 2007; 11: 1279
 
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[7] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[8] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[9] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[10] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[11] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[12] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[13] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[14] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[15] LI Wenya, ZHANG Zhengmao, XU Yaxin, SONG Zhiguo, YIN Shuo. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review[J]. 金属学报, 2022, 58(1): 1-16.
No Suggested Reading articles found!