Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (12): 1555-1560    DOI: 10.3724/SP.J.1037.2011.00398
论文 Current Issue | Archive | Adv Search |
EFFECT OF CARBON NANOTUBES ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF W
TAN Jun, ZHOU Zhangjian, LIU Yaqin, QU Dandan, ZHONG Ming, GE Changchun
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

TAN Jun ZHOU Zhangjian LIU Yaqin QU Dandan ZHONG Ming GE Changchun. EFFECT OF CARBON NANOTUBES ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF W. Acta Metall Sin, 2011, 47(12): 1555-1560.

Download:  PDF(856KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  W–based composites were fabricated by spark plasma sintering (SPS) usingWpowders and carbon nanotubes (CNTs) as raw materials. The effect of the CNTs on the microstructure and room temperature mechanical properties of W was investigated. The results show that the W2C was formed through the reaction of CNTs and W during the SPS process. The formation of the W2C activated the sintering of W and enhanced the densification of W. On the other hand, the in situ formation of W2C decreased the driving force of sintering and consequently inhibited the grain growth of W at high temperature. The grain size, relative density, bending strength and the Vicker’s hardness of W composites were 4 μm, 99%, 1353.9 MPa and 488.4 HV respectively when the content of CNTs was 0.5%.
Key words:  W      carbon nanotubes      spark plasma sintering      W2C     
Received:  28 June 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.50634060) and National Magnetic Confinement Fusion Program (No.2010GB109000)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00398     OR     https://www.ams.org.cn/EN/Y2011/V47/I12/1555

[1] Lassner E, Schubert W D. Tungsten–Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds. New York: Kluwer–Academic/Plenum Publishers,

1998: 7

[2] Smid I, Akiba M, Vieider G, Plochl L. J Nucl Mater, 1998; 258–263: 160

[3] Ryu H J, Hong S H. Mater Sci Eng, 2003; A363: 179

[4] Zhang H, Chen X F, Yang Z M, Ding B J. Mater Lett, 1999; 38: 401

[5] Kim Y, Lee K H, Kim E P, Cheong D I, Hong S H. Int J Refract Met Hard Mater, 2009; 27: 842

[6] Rieth M, Daerner B. J Nucl Mater, 2005; 342: 20

[7] Veleva L, Oksiuta Z, Vogtb U, Baluc N. Fus Eng Des, 2009; 84: 1920

[8] Kurishita H, Amano Y, Kobayashi S, Nakai K, Arakawa H, Hiraoka Y, Tajida T, Takebe K, Matsui H. J Nucl Mater, 2007; 367–370: 1453

[9] Kurishita H, Matsuo S, Arakawa H, Narui M, Yamazaki M, Sakamoto T, Kobayashi S, Nakai K, Takida T, Takebe K, Kawai M, Yoshida N. J Nucl Mater, 2009; 386–388: 579

[10] Zhang T Q, Wang Y J, Zhou Y, Lei T Q Song G M. Int J Refract Met Hard Mater, 2007; 25: 445

[11] Rea K E, Viswanathan V, Kruize A , Hosson J Th M De, O’Dell S, Mckechnie T, Rajagopalan S, Vaidyanathan R, Seal S. Mater Sci Eng, 2008; A477: 350

[12] Kinoshitan S, Saito T, Kobayashi M. J Jpn Soc Powder Powder Metall, 2001; 48(1): 51

[13] Oliveira F A C, Granier B, Badie JM, Fernandes J C, Rosa L G, Shohoji N. Int J Refract Met Hard Mater, 2007; 25: 351

[14] Oliveira F A C, Fernandes J C, Badie JM, Granier B, Rosa L G, Shohoji N. Int J Refract Met Hard Mater, 2007; 25: 101

[15] Zhang J, Li D Y, Zhao L Z. Mac Des Manuf, 2011; 2: 266

(张坚, 李德英, 赵龙志. 机械设计与制造, 2011; 2: 266)

[16] Su W, Li W Z. Foundry Technol, 2008; 29: 29

(孙巍, 李文珍. 铸造技术, 2008; 29: 29)

[17] Li S N, Song S Z, Yu T Q. J Wuhan Univ Technol, 2003; 25: 1

(李四年, 宋守志, 余天庆. 武汉理工大学学报, 2003; 25: 1)

[18] Shen J, Sun J F, Zhang F M. Mater Sci Technol, 2006; 14: 165

(沈军, 孙剑飞, 张法明. 材料科学与工艺, 2006; 14: 165)

[19] Zhang L, Schubert W D, Huang B Y. Cement Carbide, 2003; 20: 193

(张立, Schubert W D, 黄伯云. 硬质合金, 2003; 20: 193)

[20] Shankar N, Yu M F, Vanka S P, Glumac Nick G. Mater Lett, 2006; 60: 771

[21] Zhong Z, Liu B, Sun L, Lin J, Tan K L. Chem Phys Lett, 2002; 362: 135

[22] Kreupl F, Guesberg A P, Duesberg G S, Steinh¨ogl W, Liebau M, Unger E, H¨onlein W. Microelectron Eng, 2002; 64: 399

[23] Pei Y B, Guo S J, Meng F, Yang X. Mater Sci Eng Powder Metall, 2005; 10: 160

(裴燕斌, 果世驹, 孟飞, 杨霞. 粉末冶金材料科学与工程, 2005; 10: 160)

[24] Krause B, Mende M, P¨otschke P, Petzold G. Carbon, 2010; 48: 2746

[25] Xi X L, Guo Y Q, Nie Z R, Yang J C, Zuo T Y. J Beijing Univ Technol, 2004; 30: 59

(席晓丽, 郭艳群, 聂祚仁, 杨建参, 左铁镛. 北京工业大学学报, 2004; 30: 59)

[26] Liang Y J, Che Y C. Handbook of Thermodynamic Data for Inorganic Matter. Shenyang: Northeastern University Press, 1993: 12

(梁英教, 车荫昌. 无机物热力学数据手册. 沈阳: 东北大学出版社, 1993: 12)
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[12] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[13] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[14] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!