Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1147-1152    DOI: 10.3724/SP.J.1037.2011.00270
论文 Current Issue | Archive | Adv Search |
PHOTOELECTROCHEMICAL STUDY ON SEMICONDUCTOR PROPERTIES OF Ni-BASED ALLOYS OXIDE FILMS FORMED IN 288℃ HIGH TEMPERATURE WATER
ZHANG Shenghan, TAN Yu, LIANG Kexin
School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003
Cite this article: 

ZHANG Shenghan TAN Yu LIANG Kexin. PHOTOELECTROCHEMICAL STUDY ON SEMICONDUCTOR PROPERTIES OF Ni-BASED ALLOYS OXIDE FILMS FORMED IN 288℃ HIGH TEMPERATURE WATER. Acta Metall Sin, 2011, 47(9): 1147-1152.

Download:  PDF(1240KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The oxide films formed on Ni-based alloys in high temperature water with semiconductor properties were investigated by photoelectrochemical responses. Two Ni-based alloys (Incoloy800HT and Inconel600) were corroded at 288℃ for 100 h in water, and four contributions from the photocurrent are obtained by photoelectrochemical responses. Band gap energy of 2.3 eV is attributed to the presence of nickel hydroxide or nickel-ferrite oxide. Band gap energy of 2.9 and 3.5 eV are attributed to Cr2O3 and band gap energy in the range of 4.1-4.3 eV is attributed to the spinel phase FexNi1-xCr2O4. In the photoelectrochemical responses in function of the applied potential tests, the oxide films on Incoloy800HT alloy indicate n type semiconductor in the potential range from -400 mV\linebreak to +400 mV, and the oxide films on Inconel600 alloy indicate n/p type semiconductor. In addition, the dephasing angle of the photoelectrochemical responses has a 180$^{\circ}$ evolution at the potential where the semiconductor of oxide film turns from n to p type.
Key words:  photoelectrochemical response      Ni-based alloy      oxide film      semiconductor property      high temperature water     
Received:  26 April 2011     
ZTFLH: 

O646

 
Fund: 

Supported by National Natural Science Foundation of China (No.50971059) and Fundamental Research Funds for the Central Universities (No.10QX42)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00270     OR     https://www.ams.org.cn/EN/Y2011/V47/I9/1147

[1] Hamadou L, Kadri A, Benbrahim N, Petit J P. J Electrochem Soc, 2007; 154: 291

[2] Rangel C M, Silva T M, da Cunha Belo M. Electrochim Acta, 2005; 50: 5076

[3] Cheng Y F, Luo J L. Electrochim Acta, 1999; 44: 2947

[4] Schmuki P, B¨ohni H. J Electrochem Soc, 1992; 139: 1908

[5] Maurice V, YangWP, Marcus P. J Electrochem Soc, 1998; 145: 909

[6] Asami K, Hashimoto K, Shimodaira S. Corros Sci, 1978; 18: 151

[7] Sennour M, Marchetti L, Perrin S, Molins R, Pijolat M, Raquet O. Mater Sci Forum, 2008; 595: 539

[8] Sudensh T L, Wijesinghe L, Blackwood D J. Corros Sci, 2008; 50: 23

[9] Mac´ak J, Sajdl P, Kuˇcera P, Novotn´y R, Voˇsta J. Electrochim Acta, 2006; 51: 3566

[10] Carette F, Lafont M C, Chataignier G, Guinard L, Pieraggi B. Surf Interface Anal, 2002; 34: 135

[11] Carette F, Lafont M C, Guinard L, Pieraggi B. Mater High Temp, 2003; 20: 581

[12] Machet A, Galtayries A, Zanna S, Klein L, Maurice V, Jolivet P, Foucault M, Combrade P, Scott P, Marcus P. Electrochim Acta, 2004; 49: 3957

[13] Montemor M F, Ferreira M G, Hakiki N E, da Cunha Belo M D. Corros Sci, 2000; 42: 1635

[14] Fujimoto S, Chihara O, Shibata T. Mater Sci Forum, 1998; 289–292: 989

[15] Tsuchiya H, Fujimoto S, Chihara O, Shibata T. Electrochim Acta, 2002; 47: 4357

[16] Henry S, Mougin J,Wouters Y, Petit J P, Galerie A. Mater High Temp, 2000; 17: 231

[17] Calvarin G, Huntz A M, Molins R. Mater High Temp, 2000; 17: 257

[18] Balaji S, Kalai S R, John B L, Angappan S, Subramanian K, Augustin C O. Mater Sci Eng, 2005; B119: 119

[19] Sunseri O, Piazza S, Di Quarto F. J Electrochem Soc, 1990; 137: 2411

[20] Carpenter M K, Corrigan D A. J Electrochem Soc, 1989; 136: 1022

[21] Marchetti L, Perrin S, Raquet O, Pijolat M. Mater Sci Forum, 2008; 595–598: 529

[22] Marchetti L, Perrin S, Wouters Y, Martin F, Pijolat M. Electrochim Acta, 2010; 55: 5384

[23] Yves Marfaing. J Cryst Growth, 1996; 1–4: 205

[24] Sarrazin P, Galerie A, Fouletier J. Mechanisms of High Temperature Corrosion: A Kinetic Approach, Zurich: Trans Tech Publications Ltd., 2008, 488

[25] Macdonald D D. J Electrochem Soc, 1992; 139: 3434
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[3] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[4] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[5] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[6] WANG Di, WANG Dong, XIE Guang, WANG Li, DONG Jiasheng, CHEN Lijia. Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2021, 57(6): 780-790.
[7] YU Lei, CAO Rui. Welding Crack of Ni-Based Alloys: A Review[J]. 金属学报, 2021, 57(1): 16-28.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[10] Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. 金属学报, 2018, 54(3): 443-456.
[11] Zhongbo YANG,Wenjin ZHAO,Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO. Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys[J]. 金属学报, 2017, 53(1): 47-56.
[12] Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. 金属学报, 2016, 52(5): 599-606.
[13] Meiqiong OU,Yang LIU,Xiangdong ZHA,Yingche MA,Leming CHENG,Kui LIU. CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS[J]. 金属学报, 2016, 52(12): 1557-1564.
[14] Jianqiu WANG, Fa HUANG, Wei KE. CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. 金属学报, 2016, 52(10): 1333-1344.
[15] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
No Suggested Reading articles found!