Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 954-957    DOI: 10.3724/SP.J.1037.2011.00207
论文 Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS SIMULATION OF MATRIX RADIATION DAMAGE IN Fe-Cu ALLOY
HE Xinfu, YANG Peng, YANG Wen
China Institute of Atomic Energy, Beijing 102413
Cite this article: 

HE Xinfu YANG Peng YANG Wen. MOLECULAR DYNAMICS SIMULATION OF MATRIX RADIATION DAMAGE IN Fe-Cu ALLOY. Acta Metall Sin, 2011, 47(7): 954-957.

Download:  PDF(801KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The reactor pressure vessel (RPV) is the highest priority key component in nuclear power plants and is considered irreplaceable. The embrittlement of RPV steels is in general thought to be caused primarily by the formation of Cu-enriched clusters, the formation of matrix damage features, and the segregation of P atoms at grain boundaries. The displacement cascades in Fe-0.05Cu and Fe-0.3Cu alloys were studied by molecular dynamics in the current work. It was found that substitutional Cu does not significantly affect the amount, annihilation and recombination of defect produced by displacement cascade but affects the vacancy migration energy significantly. The self-interstitial atoms (SIAs) clusters and vacancies clusters are formed during the displacement cascades and affected by irradiation temperature.
Key words:  Fe-Cu alloy      radiation damage      molecular dynamics      defects cluster     
Received:  06 April 2011     
Fund: 

Supported by National Basic Research Program of China (Nos.2011CB610503 and 2007CD209801) and National Natural Science Foundation of China (No.10975194)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00207     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/954

[1] Soneda N. In: Ghetta V ed., Materials Issues for Generation IV Systems. Corsica: Springer Science, 2008: 245

[2] Odette G R, Wirth B D, Bacon D J, Ghoniem N M. MRS Bull, 2001; 26: 176

[3] Becquart C S. Nucl Instrum Methods, 2005; 228B: 111

[4] Bacon D J, Gao F, Osetsky Y N. J Comput Aided Mater Des, 1999; 6: 225

[5] Calder A F, Bacon D J. MRS Proc, 1997; 439: 521.

[6] Becquart C S, Domain C, Van Duysen J C. J Nucl Mater, 2001; 294: 274

[7] Golubov S I, Osetsky Y N, Serra A, Barashev A V. J Nucl Mater, 1995; 226: 252

[8] He X F, Yang W, Fan S. Acta Phys Sin, 2009; 58: 8657

(贺新福, 杨文, 樊胜. 物理学报, 2009; 58: 8657)

[9] Ackland G J, Bacon D J, Calder A F, Harry T. Philos Mag, 1997; 73A: 249

[10] Ludwig M, Farkas D, Pedraza D, Schmauder S. Modelling Simul Mater Sci Eng, 1998; 6: 19

[11] Pasianot R C, Malerba L. J Nucl Mater, 2007; 360: 118

[12] Becquart C S, Domain C, Legris A. J Nucl Mater, 2000; 280: 73

[13] Ashcroft N W. Solid State Physics. Philadelphia: Saunders, 1976: 4

[14] Bjorkas C, Nordlund K, Malerba L, Terentyev D, Olsson P. J Nucl Mater, 2008; 372: 312

[15] Ackland G J, Mendelev M I, Srolovitz D J, Han S, Barashev A V. J Phys: Condens Matter, 2004; 16: 1

[16] Becquart C S, Domain C. Nucl Instrum Methods, 2003; 202B: 44
[1] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[2] ZHU Xiaohui, LIU Xiangbing, WANG Runzhong, LI Yuanfei, LIU Wenqing. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. 金属学报, 2022, 58(7): 905-910.
[3] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[4] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[5] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[6] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[7] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[9] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[10] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[11] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[12] Yucheng WU. Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor[J]. 金属学报, 2019, 55(8): 939-950.
[13] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[14] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[15] Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method[J]. 金属学报, 2019, 55(5): 593-600.
No Suggested Reading articles found!