Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 423-430    DOI: 10.3724/SP.J.1037.2013.00568
Current Issue | Archive | Adv Search |
A PHASE-TRANSFORMATION-STRENGTHENED SURFACE LAYER ON Fe-20Mn-3Al-3Si STEEL FABRICATED BY MECHANICAL GRINDING
CHEN Yan1, WU Cuilan1,2(), XIE Pan1, CHEN Wanglin1, XIAO Hui1, CHEN Jianghua1,2
1 Center of High Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha 410082
2 Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082
Cite this article: 

CHEN Yan, WU Cuilan, XIE Pan, CHEN Wanglin, XIAO Hui, CHEN Jianghua. A PHASE-TRANSFORMATION-STRENGTHENED SURFACE LAYER ON Fe-20Mn-3Al-3Si STEEL FABRICATED BY MECHANICAL GRINDING. Acta Metall Sin, 2014, 50(4): 423-430.

Download:  HTML  PDF(6001KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the last decade, transformation induced plasticity (TRIP) aided steels and twinning induced plasticity (TWIP) aided steels have attracted a great deal of attention due to their high strength and exceptional ductility at room temperature. In the present work, a TRIP/TWIP austenite steel with the composition as Fe-20Mn-3Al-3Si has been investigated by means of surface mechanical grinding treatment (SMGT) since it is an alloy with low stacking fault energy. The e-M and/or a-M transformations can easily occur in the steel when deformed at room temperature. It is shown that a gradient phase-transformation-strengthened (PTS) surface layer can be formed on bulk Fe-20Mn-3Al-3Si steel by SMGT at room temperature, due to the martensitic transformation of γ→ε→α on its surface. The formation of martensitic phases is dependent on the strain applied and the orientation of grains. The more the {111} or the {110} planes of grains are parallel to the specimen surface plane, the easier the martensitic laths are to be formed in the gains. The total thickness of the PTS surface layer, which formed in the process of turning at room temperature, can be more than 400 μm, but its microstructure and hardness change with depth. The top PTS layer consists of nanometer sized grains while the sublayer contains a great many of martensite laths mixed with deformation twins. With increasing of the depth, the numbers of laths decrease. Correspondingly, the micro-hardness continuously decreases with the depth from 450 HV to about 220 HV (the hardness of the matrix). The formed PTS layer has a good thermodynamic stability, so that its microstructure and hardness almost do not change after annealed at 400 ℃ for 1 h.

Key words:  phase-transformation strengthening      surface mechanical grinding treatment      high manganese steel      strain induced phase transformation      surface strengthening     
Received:  09 September 2013     
ZTFLH:  TG142.33  
Fund: Supported by National Basic Research Program of China (No.2009CB623704), National Natural Science Foundation of China (Nos.51071064, 51171063 and 51371081) and Instrumental Innovation Foundation of Hunan Province (No.2011TT1003)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00568     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/423

Fig.1  

Fe-20Mn-3Al-3Si钢平板样品经不同方式抛光后的SEM像

Fig.2  

Fe-20Mn-3Al-3Si钢机械抛光平板样品的显微硬度压痕

Fig.3  

不同扫描模式下Fe-20Mn-3Al-3Si钢平板样品经不同方式抛光后的XRD谱

Depth Volume fraction of g Volume fraction of e Volume fraction of a
μm % % %
0~0.94 43 31 26
0.94~1.88 17 59 24
1.88~2.81 42 36 22
5.64~6.80 83.7~92 0~6 8~10.3
表1  机械抛光平板样品不同深度表面层中各相含量
Fig.4  

Fe-20Mn-3Al-3Si钢平板样品的显微组织及EBSD取向分析

Fig.5  

Fe-20Mn-3Al-3Si车削样品横截面显微组织和EBSD分析

Fig.6  

车削样品深度方向的硬度分布

[1] Grassel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[2] Frommeyer G, Brx U, Neumann P. ISIJ Int, 2003; 3: 438
[3] Mi Z L, Tang D, Yan L, Guo J. J Mater Sci Technol, 2005; 4: 451
[4] Ding H, Ting Z Y, Li W, Wang M, Song D. J Iron Steel Res Int, 2006; 6: 66
[5] Long C X. Master Thesis, Hunan University, Changsha, 2012
(龙彩霞. 湖南大学硕士学位论文, 长沙, 2012)
[6] Xie P, Wu C L, Ai B B, Chen W L, Chen Y, Chen Y. J Chin Electr Microsc Soc, 2013; 32: 211
(谢 盼, 伍翠兰, 艾倍倍, 陈汪林, 陈 燕, 陈 亚. 电子显微学报, 2013; 32: 211)
[7] Wu C L, Ai B B, Xie P, Chen W L, Li J M. J Hunan Univ (Nat Sci), 2013; 40(6): 80
(伍翠兰, 艾倍倍, 谢 盼, 陈汪林, 李久茂. 湖南大学学报(自然科学版), 2013; 40(6): 80)
[8] Long C X, Wu C L, Wang S B. J Hunan Univ (Nat Sci), 2012; 39(7): 70
(龙彩霞, 伍翠兰, 王双宝. 湖南大学学报(自然科学版), 2012; 39(7): 70)
[9] Ding H, Ding H, Song D, Tang Z Y, Yang P. Mater Sci Eng, 2011; A528: 868
[10] Ding H, Ding H, Tang Z Y, Song D, Yang P. Chin J Mater Res, 2009; 4: 375
(丁 昊, 丁 桦, 唐正友, 宋 丹, 杨 平. 材料研究学报, 2009; 4: 375)
[11] Zhang S J, Ding H, Ding H, Zeng J M, Tang Z Y. J Mater Metall, 2009; 3: 198
(张淑娟, 丁 桦, 丁 昊, 曾建敏, 唐正友. 材料与冶金学报, 2009; 3: 198)
[12] Wang Z B, Yong X P, Tao N R, Li S, Liu G, Lv J, Lu K. Acta Metall Sin, 2001; 37: 1251
(王镇波, 雍新平, 陶乃镕, 李 曙, 刘 刚, 吕 坚, 卢 柯. 金属学报, 2001; 37: 1251)
[13] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K. Acta Mater, 2002; 50: 4603
[14] Chen X H, Lu J, Lu L, Lu K. Scr Mater, 2005; 52: 1039
[15] Liu G, Wang S C, Lou X F, Lu J, Lu K. Scr Mater, 2001; 44: 1791
[16] Li W L, Tao N R, Lu K. Scr Mater, 2008; 59: 546
[17] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[18] Zheng Z J, Gao Y. J Mater Eng, 2008; (10): 137
(郑志军, 高 岩. 材料工程, 2008; (10): 137)
[19] Amar K D, David C M, Martin C M, John G S, David K M. Scr Mater, 2004; 50: 1445
[20] Cong Q Z. Two-dimensional Polycrystalline X-ray Diffraction. Beijing: Science Press, 1997: 37
(从秋滋. 多晶二维X射线衍射. 北京: 科学出版社, 1997: 37)
[21] Yong X P, Liu G, Lv J, Lu K. Acta Metall Sin, 2002; 38: 157
(雍兴平, 刘 刚, 吕 坚, 卢 柯. 金属学报, 2002; 38: 157)
[22] Kleber X, PirfoBarroso S. Mater Sci Eng, 2010; A527: 6046
[23] Yu Q M, Hu B F, Chen H M. J Beijing Univ Sci Technol, 2002; 26: 614
(余泉茂, 胡本芙, 陈焕铭. 北京科技大学学报, 2002; 26: 614)
[24] Wang B Q, Gu N J, Guo S Z, Ma X L. Acta Metall Sin, 2002; 38: 474
(王宝奇, 谷南驹, 郭素珍, 马晓莉. 金属学报, 2002; 38: 474)
[25] Wang H T, Tao N R, Lu K. Acta Mater, 2012; 60: 4027
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[3] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[4] Kai ZHU, Cuilan WU, Pan XIE, Mei HAN, Yuanrui LIU, Xiangge ZHANG, Jianghua CHEN. Microstructure and Mechanical Properties of an Austenite/Ferrite Laminate Structured High-Manganese Steel[J]. 金属学报, 2018, 54(10): 1387-1398.
[5] Lina WANG,Ping YANG,Weimin MAO. ANALYSIS OF MARTENSITIC TRANSFORMATIONDURING TENSION OF HIGH MANGANESETRIP STEEL AT HIGH STRAIN RATES[J]. 金属学报, 2016, 52(9): 1045-1052.
[6] TAO Nairong, LU Ke. PREPARATION TECHNIQUES FOR NANO-STRUCTURED METALLIC MATERIALS VIA PLASTIC DEFORMATION[J]. 金属学报, 2014, 50(2): 141-147.
[7] LUO Xinmin ZHAO Guangzhi ZHANG Yongkang CHEN Kangmin LUO Kaiyu REN Xudong. LASER SHOCK PROCESSING OF Ti-6Al-4V AND ANALYSIS OF ITS MICROSTRUCTURE RESPONSE[J]. 金属学报, 2012, 48(9): 1116-1122.
[8] WEN Yuhua ZHANG Wanhu SI Haitao XIONG Renlong PENG Huabei. STUDY ON WORK HARDENING BEHAVIOUR AND MECHANISM OF HIGH SILICON AUSTENITIC HIGH MANGANESE STEEL[J]. 金属学报, 2012, 48(10): 1153-1159.
[9] YANG Ping LU Fayun MENG Li CUI Feng’e. εCRYSTALLOGRAPHIC BEHAVIORS OF COMPRESSED HIGH MANGANESE TRIP/TWIP STEELS ANALYZED BY EBSD TECHNIQUES
I. Transformation Characteristics, Twinning and the Influence of Austenitic Orientations
[J]. 金属学报, 2010, 46(6): 657-665.
[10] YANG Ping LU Fayun MENG Li CUI Feng’e. CRYSTALLOGRAPHIC BEHAVIORS OF COMPRESSED HIGH MANGANESE TRIP/TWIP STEELS ANALYZED BY EBSD TECHNIQUES
II. MartensiticMisorientations, the Evolution of Martensitic Orientations and the Influence of Austenitic Orientations
[J]. 金属学报, 2010, 46(6): 666-673.
[11] ZHANG Weina LIU Zhengyu WANG Guodong. MARTENSITIC TRANSFORMATION INDUCED BY DEFORMATION AND WORK–HARDENING BEHAVIOR OF HIGH MANGANESE TRIP STEELS[J]. 金属学报, 2010, 46(10): 1230-1236.
[12] YANG Ping LU Fayun MENG Li MAO Weimin. STUDY ON AXIOTAXY IN HIGH MANGANESE TRIP STEEL BY EBSD[J]. 金属学报, 2009, 45(12): 1409-1413.
No Suggested Reading articles found!